一般財団法人日本科学技術連盟 第34年度(2018年度)ソフトウェア品質管理研究会 成果発表会 研究コース4 アジャイルと品質 AQAチーム 2019年2月22日(金)

アジャイル開発における段階的品質の 積み上げによる品質保証

研 究 員:伊藤 潤平(ウイングアーク1st株式会社)

横須賀 信介(テックスエンジソリューションズ株式会社)

木本 和伸(富士通株式会社)

山口 繁(日本ユニシス株式会社)

山中美穂(株式会社東芝)

岡崎 一洋(サイボウズ株式会社)

主 査:永田 敦(サイボウズ株式会社)

副 主 査:山口 鉄平(ヤフー株式会社/一般社団法人アジャイルチームを支える会)

アドバイザー:細谷 泰夫(三菱電機株式会社)

目次

- 1. はじめに
- 2. 品質保証プロセスの理想
- 3. 品質保証プロセスの現実
- 4. 提案するフレームワーク
- 5. 適用事例
- 6. 考察
- 7. 今後の課題
- 8. まとめ

はじめに

アジャイル開発の品質保証フレームワークは、 まだ確立されていない

アジャイルソフトウェア開発宣言

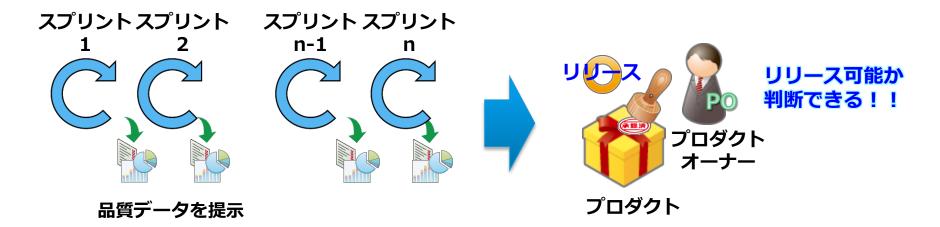
私たちは、ソフトウェア開発の実践 あるいは実践を手助けをする活動を通して、 よりよい開発方法を見つけだそうとしている。 この活動を通して、私たちは以下の価値に至った。

プロセスやツールよりも個人と対話を、 包括的なドキュメントよりも動くソフトウェアを、 契約交渉よりも顧客との協調を、 計画に従うことよりも変化への対応を、

価値とする。すなわち、左記のことがらに価値があることを認めながらも、私たちは右記のことがらにより価値をおく。

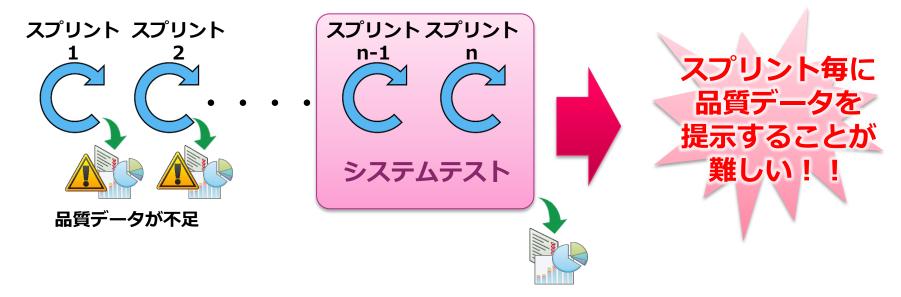
アジャイルソフトウェア 開発宣言 **動くソフト** ウェアが 重要な尺度!

品質保証に 対する定義 はない!


まだ世の中に 確立されて いない!!

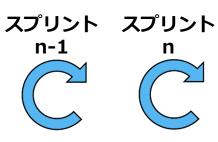
品質保証の フレームワーク

品質保証プロセスの理想


スプリント毎に品質データを提示することで開発のリスクを 明確にし、プロダクトのリリースが可能かどうか判断できる

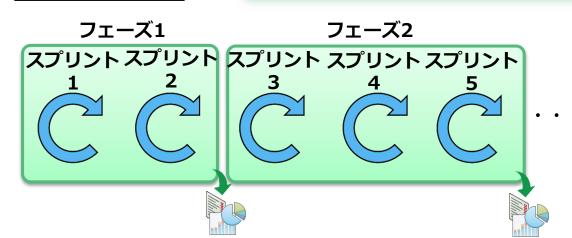
品質保証プロセスの現実

非機能を含むシステムテストは開発後半で行うことが多く、 スプリント毎に品質データを提示することが難しい

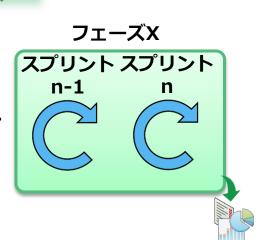

提案するフレームワーク

フェーズ毎に品質データを掲示し、徐々に品質を確保する

<u>開発プロセス(スクラム)</u>

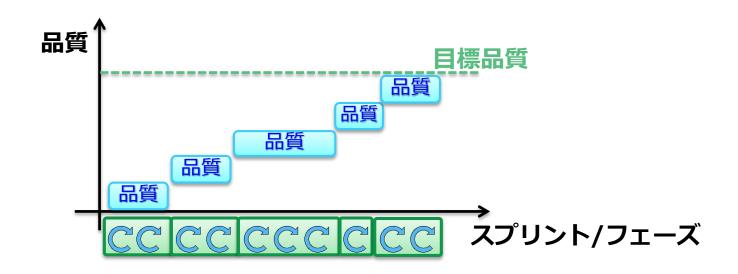


.



品質保証プロセス

フェーズ毎に品質データを提示



品質データを提示

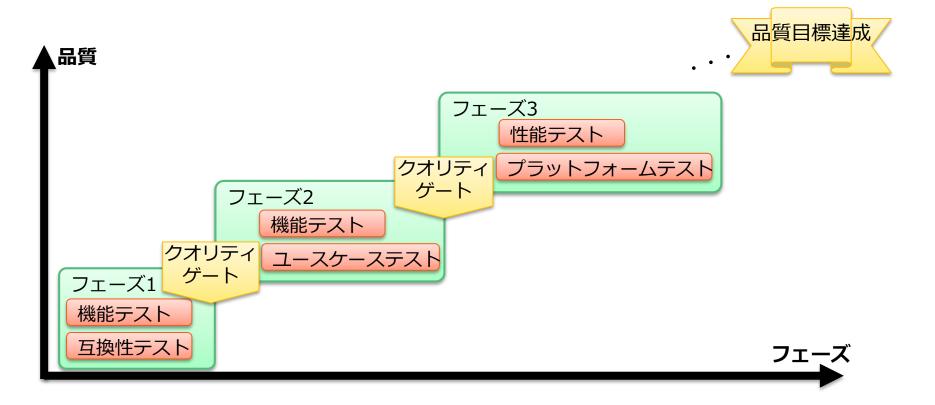
段階的な品質の積み上げ

戦略的なテスト計画を策定し、フェーズ毎に品質を確保。 品質が、段階的に積み上がっていることが確認できる。

徐々に品質を確保!!

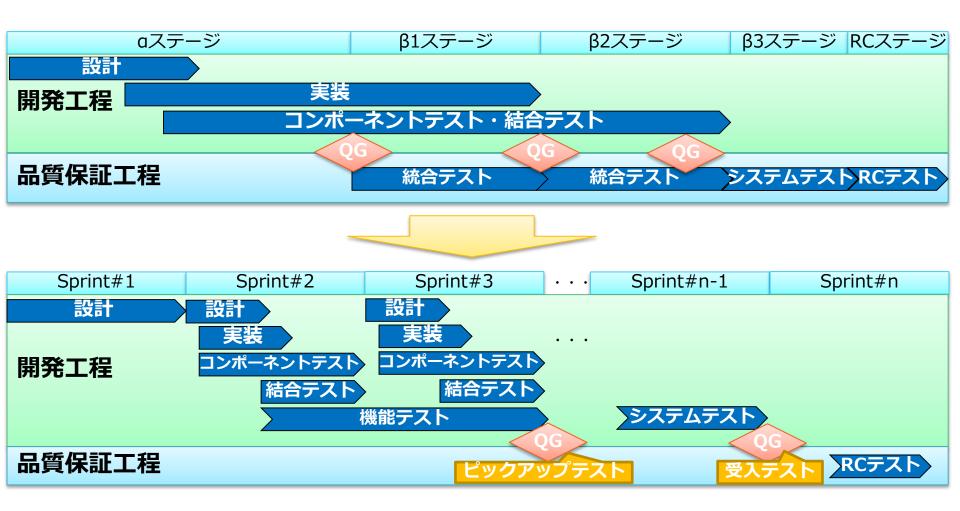
フレームワーク実践のポイント

- 1.戦略的テスト計画の作成
- 2.フェーズとクオリティゲートの設置による段階的 品質の積み上げ


戦略的テスト計画の作成

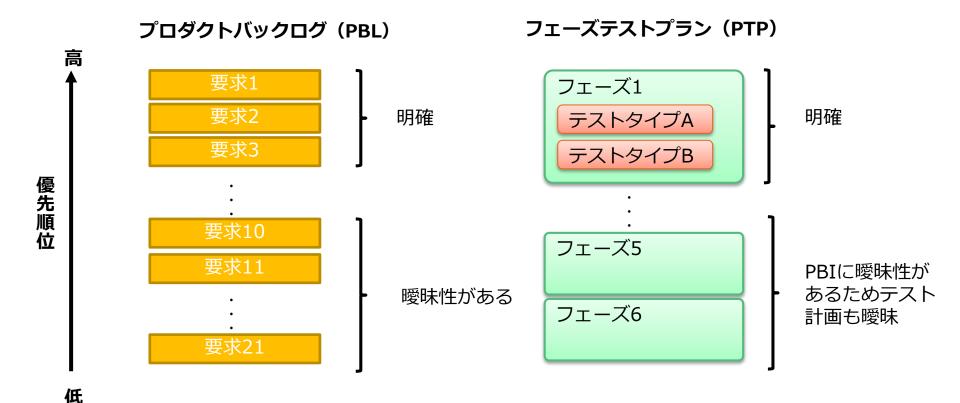
フェーズテストプラン (PTP) フェーズ1 機能テスト 互換性テスト フェーズ2 機能テスト ユースケーステスト フェーズ3 性能テスト プラットフォームテスト プロダクトバックロ グ (PBL) フェーズ1 PBI **PBI** フェーズ2 **PBI PBI** フェーズ3 **PBI PBI**

フェーズとクオリティゲートの設置に よる段階的品質の積み上げ

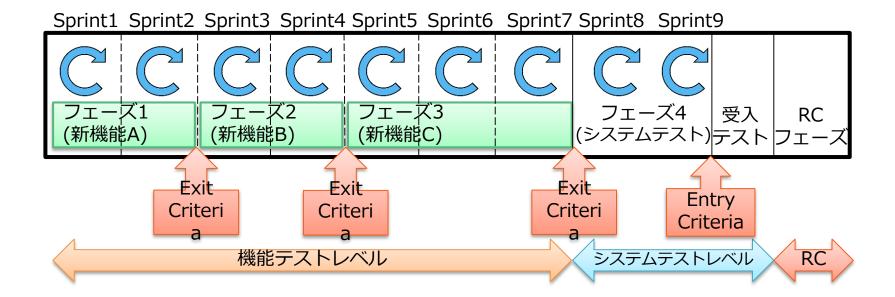


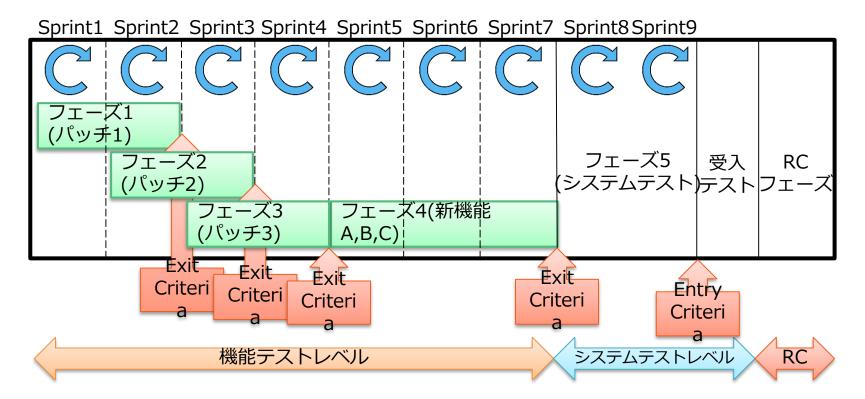
適用事例

- 1.ウイングアーク1st社製品の事例
- 2.他のパッケージソフトウェアでの試行



マスターテストプラン (MTP) の品質目標 ※一部抜粋


品質特性	副特性	品質目標	テストタイプ	
機能適合性	機能完全性	顧客修正予定となっている潜在不具合がすべて 修正されている 要望が実装され機能する	要件確認テスト リリーステスト 最終リグレッションテス ト	
	機能正確性	実装された機能が正しく動作する 母体機能が正しく動作する 新機能と母体機能を組み合わせた動作が正しく 動作する	新機能テスト 既存機能テスト	
	機能適切性	想定するユーザーシナリオが満たされる	シナリオテスト	
性能効率性	時間効率性	既存機能の処理時間が初期版と比較し劣化が発 生していない	性能テスト	
	資源効率性	新機能を含んだ一連の操作の断続的な利用で不 正なハードウェアリソースの使用が発生しない	ロードテスト	



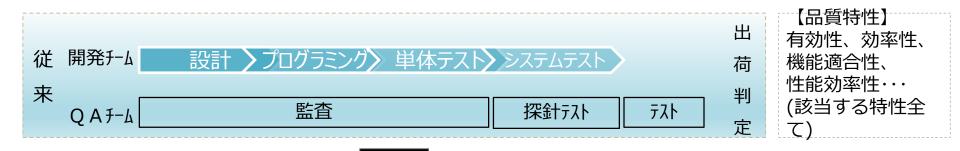
計画時のフェーズテストプラン(PTP)

最終時点でのフェーズテストプラン(PTP)

フェーズテストプランとクライテリア ※一部抜粋

フェーズ	期間	テストタイプ	クライテリア
フェーズ1	Sprint1 Sprint2	9.3.4.1パッチ検証要件確認テスト既存機能テストリグレッションテストパッチ適用テスト	ピックアップテスト ・ 各テストタイプから約5~20%を抽出して実施 ・ すべてのテストタイプで不具合0件
フェーズ4	Sprint6	機能テスト ・ 要件確認テスト ・ 新機能テスト ・ シナリオテスト ・ ローカライゼーションテスト ・ ユーザーエラー防止性テスト ・ バリデーションテスト ・ セキュリティテスト ・ プラットフォームテスト	ピックアップテスト ・ 各テストタイプから約5~20%を抽出して実施 ・ すべてのテストタイプで不具合0件 リグレッションテスト ・ フェーズ1~3で実施したテストについて機能完全性レベルのテストケースを抽出して実施 ・ すべてのテストケースで不具合0件

フェーズテストプランと各フェーズの結果


フェーズ		結果	
フェーズ1 合		合格	ピックアップテスト(37.0%を抽出)を実施
フェーズ2		合格	ピックアップテスト(36.4%を抽出)を実施
フェーズ3		合格	ピックアップテスト(25.4%を抽出)を実施
フェーズ4	1回目	不合格	ピックアップテストの結果2件の不具合を検出 6件の追加検証を実施し問題ないことを確認
	2回目	不合格	ピックアップテスト中に開発内で1件の不具合が検出 QAの指摘内容が検証されていなかったことが原因。影響範囲についての検証 を16件追加
	3回目	不合格	開発内でテストエビデンスに不備が見つかり,不具合が1件検出 テスト設計者と実施者間でのコミュニケーション不足が原因。影響範囲について42件のテストを追加
	4回目	合格	追加されたテストケースすべてを対象 フェーズ1から3までのリグレッションテストを実施

他のパッケージソフトウェアでの試行

【対象】 統合運用管理ソフトウェア

【目的】 Web画面(利用者向け)の新機能追加,画面操作性の改良

【品質特性】 <u>製品で重視する</u> 特性3つまで

- ・機能適合性
- ・使用性

2週間

5ヶ月

他のパッケージソフトウェアでの試行

動くソフトウェアをテストし、タイムリに問題をフィードバック 品質の積み上げを確認し、予定どおり出荷!

<u>不合格</u> <u>不合格</u> 合格 合格

	検査対象	テスト	インシデント・欠陥			不具合修正·改善	
	スプリント		クリティカル	メジャー	マイナー	プログラム	マニュアル
Phase1	1~3	76	0	1	25	0	0
Phase2	4, 5	18	0	(1)	8	1	2
Phase3	6, 7	16	0	0	3	1	19
Phase4	8	152	0	0	5	0	0
合計		262	0	2	41	2	21

・クリティカル

基本機能が動作しない 改善が必須

・メジャー

一部機能が動作しない改善が必要

・マイナー

改善、影響は微小将来検討で可

透明性

テスト計画(MTP、PTP)を開発チームと合意

スピード

フェーズ毎のテスト、品質リスクのキャッチ

パートナー

QAチームが顧客プロキシとして、ものづくりに協力

考察

・問題なく手法を適用できたか?

- 開発途中に要求追加や優先度変更があっても、適用できた
- スピーディな検査を求められたが、品質特性を限定して適用 できた
- QAチームと開発チームの連携不足があると追加作業が発生

・手法適用によるメリットは得られたか?

- 品質目標を計画的に実現しリリース遅延リスクを回避できた
- 不具合を早期発見でき、後戻り発生リスクを回避できた

今後の課題

・汎用性の検証

- 本研究会では、パッケージソフトウェアの事例2つに適用
- 今後は組込みソフトウェアなど他の分野に適用し、有効性や 改善点、課題を確認したい

・品質コストの削減

- テスト計画作成や、フェーズ毎のテストなど工数が増える
- チーム間の連携不足があると、さらに追加作業が発生する
- 品質コストを削減できるようプロセスを改善していきたい

まとめ

- フェーズ毎に品質データを提示することで、 段階的に品質を確保するフレームワークを考案
- 2つの事例で検証
- フレームワーク適用により、リリース遅延や後戻り発生のリスクを回避
- ・ 今後は汎用性の検証と、品質コスト削減を目指す

本研究活動において ご支援、ご協力くださった

一般財団法人・日本科学技術連盟の方々、 分科会主査 永田 敦さん、 副主査 山口 鉄平さん、 アドバイザー 細谷 恭夫さん、 活動をご承認下さった各研究員の上司の方、

すべての方々に深く御礼申し上げます.

ご静聴ありがとうございました

