一般財団法人日本科学技術連盟 第34年度ソフトウェア品質管理研究会 成果発表会

重大欠陥予測手法を活用したレビュー品質の可視化技法

~既存レビュ一記録とプロジェクト特性から第三者がレビュー品質を可視化~

レビュー自体を レビューさせていただきます

2019年2月22日(金) 研究コース2 ソフトウェアレビュー レビュー品質の可視化チーム 研究員 : ★福田 秀樹 (TI

平井 由貴美

横屋 司

高橋 喜哉

主 査 : 中谷 一樹

副主者 : 上田 裕之

アドバイザ: 安達 賢二

(TIS株式会社)

(株式会社インテック)

(ソーバル株式会社)

(株式会社日立製作所)

(TIS株式会社)

(株式会社DTSインサイト)

(株式会社HBA)

こんなこと、起きてませんか?

結合テストで I/F不具合発覚 システムテストで 本番相当量のデータで 性能が出ない

想定外データが やってきて バッチABEND

新幹線の券売機が 使用不可に!

重大欠陥が後工程で見つかり大きな手戻りに!

レビュー実施しているのになぜ防げなかった?

私は、キャサリン、 未来の品質保証部から参りました

皆さん、 レビューをしていますか?

ちゃんとレビュー?何をもって、ちゃんとでしょうか?

10ページ当たり、2時间見たから?

時间をかければ良いのですか?

指摘がたくさん出たから?

指摘の件数だけで良いのですか?

この人に見てもらったから?

この人に見てもらったから?

本当に、大丈夫だと言えますか?

重大欠陥予測手法を活用したレビュー品質の可視化技法

P2DIET:

(by using Pre-Predicted Defect Indicators, Evaluation Technique of the review quality)

重大欠陥予測手法を用いて重大欠陥の混入を予測

レビュー記録から レビュー結果を分析

重大欠陥予測手法の予測結果と レビュー結果が一致していれば レビュー品質は高いでしょう! 未来では、、、

P2Dietを使っているから 品質トラブルはありません

さあ、ご紹介して差し上げなさい

P2Diet 誕生の背景

解決したい課題

重大欠陥が後工程で見つかり大きな手戻りに!

レビュー実施しているのになぜ防げなかった?

ちゃんとレビューしたのか?

レビューを評価する手段がない!

- → レビュー工数密度:時間をかければ良いというものでもない
- → レビュー指摘密度:欠陥の重みは考慮外、過去PJのデータ
- ★ 優秀なレビューア:属人的、誰が見たかで判断するのは危険

現場:このやり方で良いと思っている、これしかない

考えた対策

重大欠陥を狙い撃ちする手法が多く考案されている

これらの手法がレビューの評価に使えるのでは?

P2Diet

重大欠陥予測手法を活用した レビュー品質の可視化技法

- ✓ プロジェクト特性に合わせた評価が可能
- ✓ 評価の目的に合わせた予測手法を選択可能
- ✓ 第三者でも評価することが可能

P2Diet 適用の手順

適用の手順

- ①重大欠陥予測手法を選定
- ②重大欠陥を予測
- ③レビュー結果と照合
- ④予測重大欠陥レビュー検出率を算出
- ⑤品質強化対応を実施

①重大欠陥予測手法を選定

No	手法名	準備	特別な知識やスキル	重大欠陥	プロジェクト 特性の反 映	実施	結果分析	総合 評価				
[1]	D2BOCs法	3	3	-	3	2	2	16				
	検出難易度の高い欠陥 ^を _{検出するレビュー観点}	3	3 6つの項目で評価 ・準備の容易さ ・特別な知識やスキルの必要性									
	重大欠陥を効率よく ^{検出す} るレビュー手法の提案と有効性の実験報告	1										
4	ビジネスリスク ^{に直結するレ} ビューポイント導出方法の提案	1	1・予測できる重大欠陥の信頼性									
[5]	レビューポイント	1			の特性の	反映度		10				
[6]	3分割レビュー (TRP観点表)	2	・実施の容易さ ・結果分析の容易さ									
[7]	SBR法 (ステルスベースドレビュー手法)	2	2	_	J	<u>_</u>		12				
	間接的メトリクス ^{を用いて欠陥} 予測を行うレビュー方法	1	2 10個の手法を比較 D2BOCs法が総合評価で1位									
	HDR法 ^{(仮説} 駆動型レビュー手法)											
	DPDT法		ZBUCS);	去小総合)		14	2	11				

②重大欠陥を予測

認知バイアス名称	a 可用性ヒューリスティック	b 機能的固定	c アンカリング	d 文化的バイアス	e 曖昧性効果	f 知識の呪い	g フォーカス効果	h 専門偏向	i 共有情報バイアス	j サンプルサイズに対する鈍感さ	k ゼロリスクバイアス	1 ユニットバイアス	m 社会的望ましさバイアス
 対象		2	5	1	3	1	7	2	5	逃感さ 2	3	9	3
		1			1								

D2BOCs法を利用して予測

・A表:作成者の置かれた状況から認知バイアスを特定

・B表:成果物の特徴から認知バイアスを特定

·C表:認知バイアスから重大欠陥種類を予測

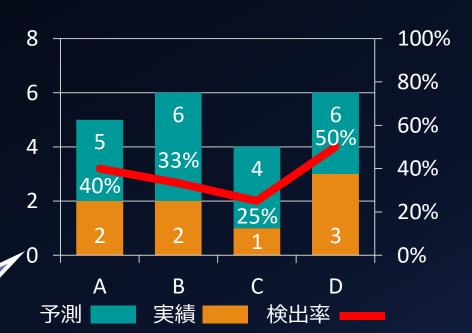
※予測手法により、やり方は異なる

													_		. 1
C-14	読解困難	用語の使い方を間違えている・意味を 取り違えている									1				
C-15		誤実装の誘発			1		1		1		1				
			順百/六	2	0	1	12	6	12	2	0	1	c	1	6

③レビュー結果と照合

欠陥の傾向		レビュー指摘予実		能A
		重大欠陥種類	予測	実績
	C-01	前提条件となる記載がない		
欠落	C-02	未経験箇所の条件が漏れる	0	0
(対応されず)	C-03	組織内の作成規約に違反している・必須で対応すべき内容 が抜ける		
	C-04	例外ケースの考慮が漏れる		
	C-05	セキュリティ面の考慮が漏れる		
欠落 (考慮されず)	C-06	類似した機能において,機能独自の仕様が記載されていた い	0	
('J//8C(10))	C 07	JEJ市推立IVAがまれて		
レビュー				
矛盾	C-10	TITharcOarharからは、1月に回口回口いらいの		
2/16	C-11	機能に関する影響範囲間の辻褄が合っていない		
未対応	C-12	課題修正箇所に関連する箇所の変更対応がされない		
	C-13	類似機能の処理が流用元のままとなっている	0	0
読解困難	C-14	用語の使い方を間違えている・意味を取り違えている	0	
	C-15	誤実装の誘発	0	

④予測重大欠陥レビュー検出率を算出


予測重大欠陥レビュー検出率(%)

検出した重大欠陥項目数

X100

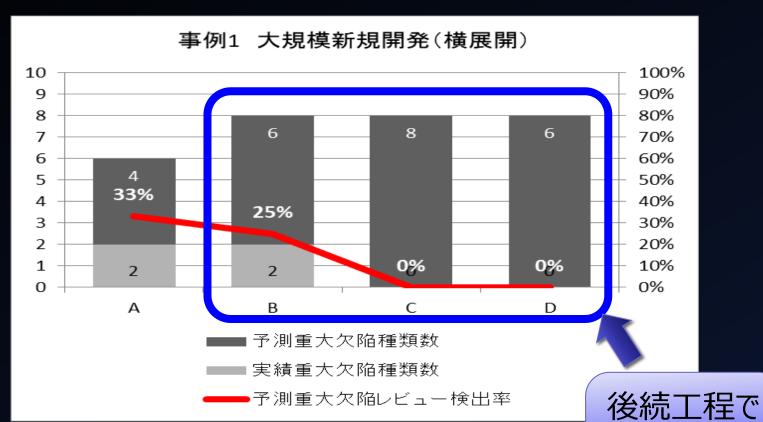
予測重大欠陥項目数

機能	予測 重大欠陥 項目数	検出した 重大欠陥 項目数	予測重大欠陥 レビュー検出率
Α	5 個	2 個	40%
В	6 個	2 個	33%
С	4 個	1個	25%
D	6 個	3 個	50%

グラフで可視化

⑤品質強化対応を実施

欠陥の傾向		レビュー指摘予実		機能A		機能B		機能C		機能D	
		重大欠陥種類		予測	実績	予測	実績	予測	実績	予測	実績
欠落	C-01		る記載がない								
スタ (対応され	C-02	未経験箇所の	D条件が漏れる	0	0	0	0	0	0	0	0
ず) ず)	C-03		違反している・必須で対 3容が抜ける								
	C-04	例外ケースの	考慮が漏れる							0	0
	C-05	セキュリティ面の	の考慮が漏れる								
欠落 (考慮され	C-06	·	, 機能独自の仕様が記 ていない	0		0		0		0	
ず)	C-07	非連携部分の	情報が欠落する			0					
	C-08	影響範囲の	対応が抜けて			0	0				
	C-09	性能に関す									
7 E	C-10	InputとOutpu	未検出の重	巨フ	入	ZVí	で	冉	チュ	ニツ	ク
矛盾	C-11		ᆁᇚᄽᄯᄧᄱᆸᄼᄾᄬ								
未対応	C-12		する箇所の変更対応がはない								
	C-13	類似機能の処理が流用元のままとなっている		0	0					0	0
読解困難	C-14	用語の使い方を間違えている・意味を取り違え ている		0		0		0		0	
	C-15	誤実装の誘発				0		0		0	



P2Diet 実験と評価

実験の対象

事例	業種	特徴
事例 1	金融カード	大規模短納期
事例 2	製造業系	大規模派生開発
事例 3	交通系	大規模派生開発
事例 4	公共系	小規模保守、新規開発

事例1の結果

後続上程で 重大欠陥が 発見された

わかったこと

レビュー品質を可視化できた

評価結果と実態の関係性が確認できた

成果物品質の影響は少なからず受けた

重大欠陥予測手法の精度に依存する

今後の課題

他の重大欠陥予測手法も含めた追実験

- 利用する予測手法による差異検証
- 検証範囲の特殊性排除
- 閾値の見極め

新たな重大欠陥予測手法の調査と取込

重大欠陥予測手法の活用促進への貢献

まとめ

P2Diet

の活用メリット

レビューの品質を可視化することができる

重大欠陥に的を絞ることができる

当該PJの状況を反映した指標となり 納得性が高い

技法の適用は第三者でも取り組める

重大欠陥予測手法を活用したレビュー品質の可視化技法

P2DIET:

(by using Pre-Predicted Defect Indicators, Evaluation Technique of the review quality)

ご清聴ありがとうございました

