
© Hitachi, Ltd. 2017. All rights reserved.

An Approach to Quality Progress in Large-
Scale, Short-Term Software Development

Confidential This file or parts not be reproduced in any form

株式会社 日立製作所
システム＆サービスビジネス統括本部
品質保証本部

2017/3/20-22 Ver. 1.0

Naoki Toko

© Hitachi, Ltd. 2017. All rights reserved.

1. Overview
2. Introduction

Contents

1

3. Invisible quality problem
4. Approach to quality progress
5. Conclusions
6. From now on

© Hitachi, Ltd. 2017. All rights reserved. 2

１. Overview

DevelopersDevelopersSIerSIer

ProcurementProcurement

DeliveryDelivery

HITACHI have quality management method.
Based on Japanese way, Using metrics.

Quality Mind and Skill Scoring SystemQuality Mind and Skill Scoring System

© Hitachi, Ltd. 2017. All rights reserved. 3

１. Overview

Software : Large-Scale, Short-Term

Risk : Poor-Quality, Big-Delay, Great-Cost

Software : Large-Scale, Short-Term

Risk : Poor-Quality, Big-Delay, Great-Cost

Upgrade HITACHI way

ISO9000® CMMI® Japanese ways
Metrics etc.

HITACHI
experience

Point 1

Point 2

Point 3

Point 4

No additional costNo additional cost

Easy detection for missEasy detection for miss

Visualization of working qualityVisualization of working quality
Improvement of quality mindImprovement of quality mind

Problem

© Hitachi, Ltd. 2017. All rights reserved. 4

２. Introduction

We examined the method for measuring
and improving the “Quality Progress”
in software development

We examined the method for measuring
and improving the “Quality Progress”
in software development

© Hitachi, Ltd. 2017. All rights reserved. 5

３. Invisible quality problem

It is important to predict product
quality before testing begins
It is important to predict product
quality before testing begins

Delivery
delays
Delivery
delays

Cost
overruns
Cost
overruns

In acceptance test,
If the software's quality is poor
In acceptance test,
If the software's quality is poor

© Hitachi, Ltd. 2017. All rights reserved.

4.1 Effect of work process on quality
4.1.1 Analysis target (test structure)
4.1.2 Analysis target (measurement data)
4.1.3 Process analysis results
4.1.4 Definition of a good process
4.2 New QM3S method
4.2.1 QM3S procedure overview
4.2.2 QM3S application results
4.2.3 To predict product quality from work quality

４. Approach to Quality Progress

6

© Hitachi, Ltd. 2017. All rights reserved. 7

４.１ Effect of work process on quality

We found out
which process
was the primary cause

We found out
which process
was the primary cause

Targeting the same softwareTargeting the same software

Multiple teams testsMultiple teams tests

Differences arose in the test resultsDifferences arose in the test results

© Hitachi, Ltd. 2017. All rights reserved. 8

４.１.１ Analysis target (test structure)

Project structureProject structure

© Hitachi, Ltd. 2017. All rights reserved. 9

４.１.２ Analysis target (measurement data)

Quality metrics
Work processesthe number of bugs, the number of

checklist items,etc.
the number of bugs, the number of
checklist items,etc.

Progress metrics the count and time of
reviews, the count and time
of meetings,etc.

the count and time of
reviews, the count and time
of meetings,etc.the number of days of delay,

delay staff-hours
the number of days of delay,
delay staff-hours

© Hitachi, Ltd. 2017. All rights reserved. 10

" " that produces a
good quality products will meet the
following criteria

" " that produces a
good quality products will meet the
following criteria

４.１.３ Process analysis results

© Hitachi, Ltd. 2017. All rights reserved. 11

４.２ New QM3S method

Quantifying the process implementation statusQuantifying the process implementation status
“Quality Progress”“Quality Progress”

To improve quality To improve quality

Quality Mind and Skill
Scoring System
Quality Mind and Skill
Scoring System

© Hitachi, Ltd. 2017. All rights reserved. 12

４.２.１ QM3S procedure overview

Process
Self-check Review Audit
Developer Development leader Quality Assurance

Event
Execute
checklist

Confirm
check
results

Check for
completed
checklist

HITACHI way

© Hitachi, Ltd. 2017. All rights reserved. 13

４.２.１ QM3S procedure overview

Process
Self-check Review Audit
Developer Development leader Quality Assurance

Event
Execute
checklist

Confirm check
results

Check for
completed
checklist

Process
Self-check Review Audit
Developer Development leader Quality Assurance

Event

Execute
new
checklist

Confirm check
results
Provide feedback

Analyze quality
progress

Before

New procedure

Point 1 Point 2 Point 3

© Hitachi, Ltd. 2017. All rights reserved. 14

４.２.１ QM3S procedure overview

No. Content of check Developer Development
leader

Name Name

1 For IF statement branches, ▲▲▲ must be observed. 10 0
2 For character code conversions, use ○○. 2 4

n Quality Progress XXX points

No. Content of check Developer Development
leader

Name Name

1 For IF statement branches, ▲▲▲ must be observed.

2 For character code conversions, use ○○.

n ■■■····.

Before

Point 1 Point 2

Point 3

New checklist

© Hitachi, Ltd. 2017. All rights reserved. 15

４.２.１ QM3S procedure overview

No. Content of check Developer Development
leader

Name Name

1 For IF statement branches, ▲▲▲ must be observed. 10 0
2 For character code conversions, use ○○. 2 4

n Quality Progress XXX points

Execute new checklist

Point 1

●No additional cost●No additional cost

●Impossible to enter by
copying and pasting

●Impossible to enter by
copying and pasting

© Hitachi, Ltd. 2017. All rights reserved. 16

４.２.１ QM3S procedure overview

No. Content of check Developer Development
leader

Name Name

1 For IF statement branches, ▲▲▲ must be observed. 10 0
2 For character code conversions, use ○○. 2 4

n Quality Progress XXX points

Provide feedback

Point 2

●Easy detection for miss●Easy detection for miss

●We can see how much
feedback leader gave

●We can see how much
feedback leader gave

© Hitachi, Ltd. 2017. All rights reserved. 17

４.２.１ QM3S procedure overview

No. Content of check Developer Development
leader

Name Name

1 For IF statement branches, ▲▲▲ must be observed. 10 0
2 For character code conversions, use ○○. 2 4

n Quality Progress XXX points

Analyze Quality Progress

●Improvement of quality
mind

●Improvement of quality
mind

●Visualization of working
quality

●Visualization of working
quality

Point 3

© Hitachi, Ltd. 2017. All rights reserved. 18

４.２.２ QM3S application results

Software : Large-Scale, Short-Term
Risk : Poor-Quality, Big-Delay, Great-Cost
Developers : China (International Procurement)
Target phase：Detailed design ~ Unit testing

Software : Large-Scale, Short-Term
Risk : Poor-Quality, Big-Delay, Great-Cost
Developers : China (International Procurement)
Target phase：Detailed design ~ Unit testing

QM3S Applied Did not apply

System scale 1,096 kS 202 kS
Number of team 11 2

Number of
Developer 60 11

kS:1,000 step(Lines of code)kS:1,000 step(Lines of code)

© Hitachi, Ltd. 2017. All rights reserved. 19

４.２.２ QM3S application results

Results of bug density measurementsResults of bug density measurements
Team Self-check Review Test

Applied 2.8bugs/kS 0.5bugs/kS 4.3bugs/kS

Did not
apply 0.9bugs/kS 0.4bugs/kS 7.4bugs/kS

Value
planned Undefined 4.3bugs/kS

More bugs can be discovered.
Approach the value planned.
More bugs can be discovered.
Approach the value planned.

Bugs/kS: bugs in 1,000 Lines of codeBugs/kS: bugs in 1,000 Lines of code

© Hitachi, Ltd. 2017. All rights reserved. 20

Measuring
times

Measuring
times

Quality
progress
Quality
progress

1st1st 2nd2nd 3rd3rd 4th4th

500 500

1000 1000

1500 1500

2000 2000 Improvement

Improvement

４.２.２ QM3S application results

Results of Quality ProgressResults of Quality Progress

:Team1

:Team2

:Team3

© Hitachi, Ltd. 2017. All rights reserved. 21

４.２.２ QM3S application results

Quality Progress and residual bug density

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 500 1000 1500 2000 2500

When quality progress is large,
Residual bug density is low.
When quality progress is large,
Residual bug density is low.

Quality
Progress

Residual bug density

:Function

© Hitachi, Ltd. 2017. All rights reserved. 22

４.２.３ To predict product quality from work quality

PATENT PENDING

New checklist format
Quality Progress
We can predict
the quality of software

New checklist format
Quality Progress
We can predict
the quality of software

© Hitachi, Ltd. 2017. All rights reserved. 23

５. Conclusions

measure Quality Progress in each
phase of software development.
measure Quality Progress before
testing.
predict and improve the quality of
outsourced software.
reduce the risk of delivery delays and
cost overruns.

measure Quality Progress in each
phase of software development.
measure Quality Progress before
testing.
predict and improve the quality of
outsourced software.
reduce the risk of delivery delays and
cost overruns.

We canWe can
Quality Mind and Skill Scoring SystemQuality Mind and Skill Scoring System

© Hitachi, Ltd. 2017. All rights reserved. 24

６. From now on

We are still examining:We are still examining:

The appropriate number
of checklist items
Priority of checklist items
Frequency of checklist
item re-examination

The appropriate number
of checklist items
Priority of checklist items
Frequency of checklist
item re-examination

© Hitachi, Ltd. 2017. All rights reserved.

Hitachi, Ltd.
Information & Communication Technology Business Division
Quality Assurance Division

An Approach to Quality Progress in Large-Scale, Short-Term
Software Development

END

25

© Hitachi, Ltd. 2017. All rights reserved. 27

7. appendix

No. Main
category Data Source

1

Quality
metrics

Number of undetected bugs Bug report

2 Number of undetected bug criticality (A + B) events Bug report

3 Bug density Bug report

4 Number of bug criticality (A) events Bug report

5 Checklist density Checklist

6 Number of checklist classifications (abnormal + limit) Checklist

7 Progress
metrics

Delay days Progress report

8 Delay staff-hours Progress report

9

Work
processes

Number of checklist reviews Review minutes

10 Time of checklist review Review report

11 Ratio of noted items concerning checklist classifications (abnormal, limit) Review minutes

12 Existence of detailed schedule Interview

13 Number of morning and evening meetings Interview

14 Time of morning and evening meetings Interview

15 Number of pending issues Pending issue
management ledger

16 Average delay (days) in tackling pending issues Pending issue
management ledger

17 Opportunity to share information on bugs Interview

18 Overall ratio of similarity review target Bug report

© Hitachi, Ltd. 2017. All rights reserved. 28

No. Classifi-
cation metrics Work process

1

Quality

Bug density/number of bug
criticality (A) events

Using a self-checklist, review the checklist and check for omissions on an
item-by-item basis.

2 Provide opportunity to share information on bugs.
(Example: Hold morning and evening meetings.)

3

Ratio of checklist
classifications (abnormal +
limit)

Using a self-checklist, review the checklist and check for omissions on an
item-by-item basis.

4 When each Developer completes the first one, review the checklist. From
the second one and thereafter, reflect noted items.

5 During the checklist review, confirm whether the standard values of checklist
classifications (normal: 60%; abnormal: 20%; limit: 20%) are met.

6

Progress Delay days/delay staff-hours

Manage work such that the team can share information on bugs discovered
early.

7 Set pending issue deadlines after clarifying the basis for said deadlines.
(Indicate the priority of pending issue measures, and then tackle the work.)

7. appendix

© Hitachi, Ltd. 2017. All rights reserved. 29

7. appendix

Coding rules are provided for each program language.
These rules are designed to reduce inconsistencies in code that
is produced by different developers.
Because of these rules, we can assume that the same number of
lines of code (LOC) will be produced from the same design
document even if the developer is different.
In Japan, LOC is used as an empirical metrics because it allows

information to be obtained and shared easily.

SIerSIer

Lines of code (LOC) is
used as the metrics for
expressing the size of a
program in HITACHI.

© Hitachi, Ltd. 2017. All rights reserved. 30

7. appendix

DevelopersDevelopers

is useful for Developers
To review the project structure
To improve quality mind of members
To understand the work of the

Developer

is useful for Developers
To review the project structure
To improve quality mind of members
To understand the work of the

Developer

© Hitachi, Ltd. 2017. All rights reserved. 31

7. appendix

Software summary : Test administration system
System scale : 1,298 kS (Lines of code)
Development period : 1year8months（ ：5months）

Software summary : Test administration system
System scale : 1,298 kS (Lines of code)
Development period : 1year8months（ ：5months）

Functional design

Coding/desk checking

Unit testing

Business component/
Application software testing

System/Business
operation testing

Detailed design

Architectural design
Design
phase

Manufacturing
phase

Testing
phase

User operation
testing

Planning/requirement
definition

Applied

