

Empowered by Innovation

Success Factors to Achieve Excellent Quality - CMMI Level 5 Organizations Research Report -

Naomi Honda NEC Corporation

Business Domains and Their Chief Products and Services

Previous study

Beyond CMMI level 5

• "CMMI level 5" doesn't necessarily guarantee excellent quality

Beyond CMMI level 5 = Achieving "real" excellent quality

What's the keys to achieve "real" excellent quality?

Benchmarking using process data between CMMI level 5 organizations

Superior abilities for defect root-cause analysis

QCC: Quality-Centric software engineering Culture

•The important Idea : The quality is the highest priority in the organization

Behaviors of the developers based on the idea

Organization A and Organization B

- Similar development conditions
 - •Business area, Shipment volume
 - •Development size
 - •Number of engineers (2,000 engineers each)
 - •Software process with CMMI level 5
 - •V-model, V & V
 - •Development and Management techniques

Only organization B had troubled with Large number of post-release defects !

Page 4

Comparison of the number of post-release defects

Kaizen activities

Analytical strategy	Kaizen Activities	
Benchmarking using process data	1.Reinforcing defect detection during design or code review	
	2. Increasing the success rate of 1+n procedure	
Benchmarking Quality management system	3. Implementation of independent QA testing	
	4. Quantitative management on a weekly basis using face to face communication	

Data items

Category	No.	Data item	Unit		
	1	Total effort	Person-hours/KL		
Effort	2	Design and coding effort	Person-hours/KL		
	3	Review effort	Person-hours/KL		
	4	Testing effort	Person-hours/KL		
5		Total defect	Number of defects/KL		
	6	Defect during review	Number of defects/KL		
Defect	7	Defect during testing	Number of defects/KL		
8		Upstream defect detection rate	%		
Testing item	9	Testing item	Number of testing items/KL		
Preventive action	e 10 Success rate of 1+n procedure		%		

Descriptive statistics on the data

		Organization A				Organization B							
No. Data iter	Data item	Before Kaizen			After Kaizen		Before Kaizen			After Kaizen			
		Ν	Mean	Std. Deviation	Ν	Mean	Std. Deviation	Ν	Mean	Std. Deviation	Ν	Mean	Std. Deviation
1	Total effort	11	100.00	30.17	11	113.15	47.36	8	73.24	24.92	7	100.86	54.33
2	Design and coding effort	11	100.00	50.57	11	111.43	38.99	8	106.25	39.98	7	150.70	94.37
3	Review effort	11	100.00	31.22	11	91.24	23.71	8	47.56	9.17	7	81.48	22.91
4	Testing effort	11	100.00	33.79	11	120.12	74.45	8	54.69	22.57	7	67.35	39.45
5	Total defect	11	100.00	17.61	11	96.82	28.55	7	80.84	15.94	7	87.43	9.62
6	Defect during review	11	100.00	18.81	11	95.27	28.77	7	63.07	17.95	7	80.25	7.97
7	Defect during testing	11	100.00	18.31	11	106.21	61.65	7	187.77	46.48	7	130.68	34.30
8	Test item	11	100.00	34.56	11	114.66	82.14	8	57.82	22.05	7	129.75	69.64
9	Upstream defect detection	11	100.00	2.60	11	98.95	7.83	7	77.61	9.55	7	92.15	5.02
10	Success rate of 1+n procedure	11	100.00	66.77	9	73.09	66.49	8	30.49	61.23	7	81.06	53.47

Note:

1. All values are summed up for one year of each product.

2. All values are shown using relative values, assuming the mean value for **Organization A as 100.**

Process data of organization B (before Kaizen)

Experiences in organization A

Process data of organization B (after Kaizen)

Result of defects during review and testing

<Comparing of defects during review and testing>

Early detection more than 80% of defect during design or code review is a key to achieve excellent quality

Lessons Learned 1

Success factors to achieve excellent quality

- Early detection more than 80% of defect during design or code review
- Superior abilities for defect root-cause analysis

Kaizen activities

Analytical strategy	Kaizen Activities		
Benchmarking using process data	1.Reinforcing defect detection during design or code review		
Gutu	2. Increasing the success rate of 1+n procedure		
Benchmarking Quality management system	3. Implementation of independent QA testing		
	4. Quantitative management on a weekly basis using face to face communication		

Comparison of Quality management system

I	tem	Organization A	Organization B		
Software	process	V model V & V etc.	V model V & V etc.		
Quality checking through develop- ment	Based on deliverables	Independent QA testing for final products	Not applicable		
	Based on process data	Weekly basis Discussing on weekly Project management meeting	 On completion of each process Confirmation in writing 		

Effects and Lessons learned

Kaizen Activity	Effects	Lessons learned
Implementation of independent QA testing	 4% of total defects were detected Shipment of defective software products were reasonably postponed 	Quality assurance from both process quality and product quality has a good effect on reduction of post-release defects.
Quantitative management on a weekly basis using face to face communication	Problems were timely figure out through development <example> Checking whether actual value of the review effort reaches the target value</example>	Quantitative management with hands-on approach has a good effect on reduction of post- release defects.

Actual spot

- Visiting the location of the trouble
- Actual object
 - Iooking at the actual objects there
 - Actual phenomenon
 - Observing what is really happening

Instead of sitting at one's desk theorizing!

Behavioral changes in organization B

	Before Kaizen	After Kaizen
Participants in Quality meeting	Very few words	Lively discussion
Address of the Top management in the year beginning	No words about quality procedure	 Explaining the importance of product quality Declaration about the quality target
Quality-centric software is being bui	Holding of Quality enhancement event	

Conclusion

Success factors to achieve excellent quality

- 1. Early detection more than 80% of defect during design or code review
- **2.** Superior abilities for defect root-cause analysis
- 3. Quality assurance from both side of process quality and product quality
- Quantitative management with hands-on approach
- 5. Quality-centric software engineering culture

NEC Group Vision 2017

To be a leading global company leveraging the power of innovation to realize an information society friendly to humans and the earth

Empowered by Innovation

