

@Hitachi High-Technologies Corporation

Research and Development Division

Noriko lizumi

Abstract

Suggests a practical method of extracting and describing domain-specific knowledge

Feature1: Existing documents are used as a knowledge framework Feature2: Knowledge is described in text and diagram for anyone at anytime

Systematization and utilization of domain-specific knowledge increases the organization's capability as well as the design quality

Utilization of Domain-Specific Knowledge for Quality Software Design

Contents

- 1. Introduction
- 2. Difficulties in utilizing Domain-Specific Knowledge
- 3. Method for Extracting and Describing Domain-Specific Knowledge
- 4. Application Results
- 5. Conclusions

1-1. Why Do We Need Domain-Specific Knowledge?

- Change of external factors
 - Short-term development
 - Requirement of safety
 - Advanced features of products
- Change of development environment
 - From a few select members to many diverse members
 - Necessity for an understanding of an unknown domain

<u>Domain-specific knowledge means:</u>

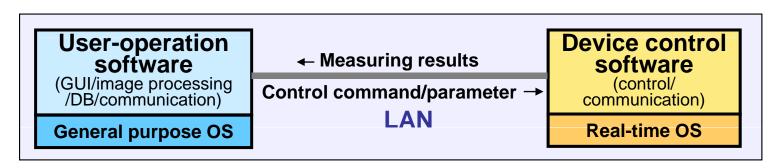
- ✓ Background knowledge, such as an operating environment, the purpose for which equipment is used
- ✓ Business knowledge, such as product strategy and relationships with peripheral equipment

1-2. The Products of Hitachi High-Technologies

Two Main Pillars of Product Series

Electronic Device Systems

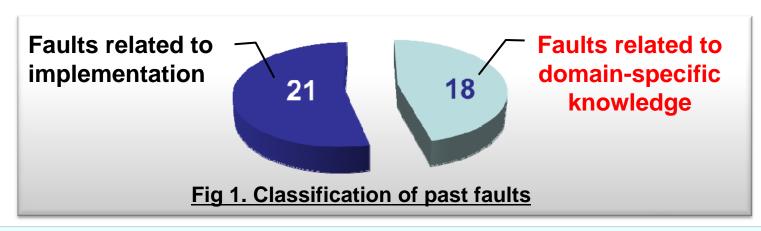
- Semiconductor
 Manufacturing Equipment
 CD-SEM / Wafer Defect
 Inspection System
 Etching System
- Electron Microscope



Life Sciences

- Medical Analysis
 Equipment
 Automatic Clinical
 Chemistry and
 Immunodiagnostic
 Analyzer
- Biotech Equipment
 DNA Sequencer
 Liquid Chromatograph

Typical Software Structure


1-3. Importance of Domain-Specific Knowledge

- History of Quality Improvement
 - ✓ Team review (Documents / Code)

(since 1998)

- ✓ Software Reliability Improvements with Precise Software

 Development Process < The 31st Reliability and Maintainability Symposium (2001)>
- ✓ Simultaneous Design of Functional Specifications and Test Specifications Using Tool "F2T" <3rd World Congress for Software Quality (2005)>

We must focus on acquiring Domain-Specific Knowledge!!

2-1. Difficulty in extracting knowledge

- Domain-specific knowledge is accumulated within individuals through experience
 - ✓ People who need domain-specific knowledge cannot show what is necessary
 - ✓ People who need domain-specific knowledge cannot provide the scope

Difficult to show what they need

9

2-2. Difficulty in describing knowledge

- Domain-specific knowledge is accumulated within individuals through experience
 - ✓ It cannot be seen from outside
 - ✓ It does not have an organized form.
 - The significance changes by people who possess Domainspecific knowledge

Difficult to output domain-specific knowledge by specialists themselves

2-3. Domain-specific knowledge required by enginee Hitachi High-Technologies

- For understanding domain
 - The user's business
 - The purpose of installing the equipment
 - The user's operation flow
 - Social motivations such as laws and regulations
- For quality software design
 - The historical reasons for changes of requirements or demands
 - Background of the hardware technology
 - Background of the software technology

3-1. Features of suggested method

Extracting

- Designed to be conducted by software engineers
 - (a) Formation of a team
 - (b) Knowledge framework based on the existing documents
 - (c) Extraction using interview questionnaire

Describing

- Explain domain-specific knowledge in text and diagram for anyone at anytime
 - (a) General information manual (Text)
 - (b) Domain-specific model (Diagram)

3-2. How to Extract Domain-specific Knowledge

- (a) Formation of a team
 - One or more engineers (as a writer)
 - One or more specialists (as a reviewer)
- (b) Creation knowledge framework using existing documents
 - Source of domain-specific knowledge
 - Operation manuals
 - User requirements
 - Design specifications

Key point! Use two or more product's documents

3-3. How to Extract Domain-specific Knowledge

(c) Extraction steps

Step 1: Knowledge determination

- Determine the scope of search knowledge
- Decide the references from selected documents
- Make a knowledge frame

Step 2: Information collection

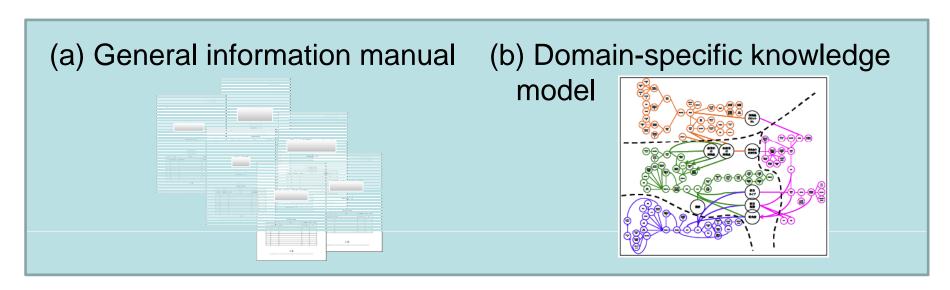
- Look for descriptions corresponding to the domain-specific knowledge
- Copy and paste relevant parts from existing documents

Key point! Make knowledge framework using existing documents

3-3. (Cont)

- (c) Extraction steps(Cont)
 - Step 3: Information arrangement and question compilation Generate topic lists with questions
 - -> Enable remove bias from writers and specialists
 - Step 4: Knowledge extraction from specialists using questionnaire Extract knowledge using the list of questions
 - -> Enable lessen the specialists workload

Key point! Set a common goal and go there


Step 5: Knowledge description(to be shown next)

3-4. How to describe domain-specific knowledge

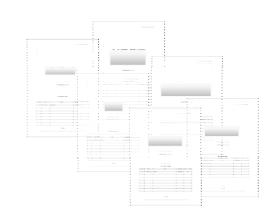
The extracted domain-specific knowledge is used to complement the engineers' limited knowledge.

Requirements

- ➤ Enable the study of domain-specific knowledge at any time by a newly arrived engineer
- > Enable the overview and the relation between sub-domains

3-5. General information manual

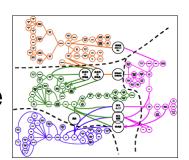
Features


➤ Explain from user view

No : What can the system do?

Yes: Why is it necessary?

Attentions!

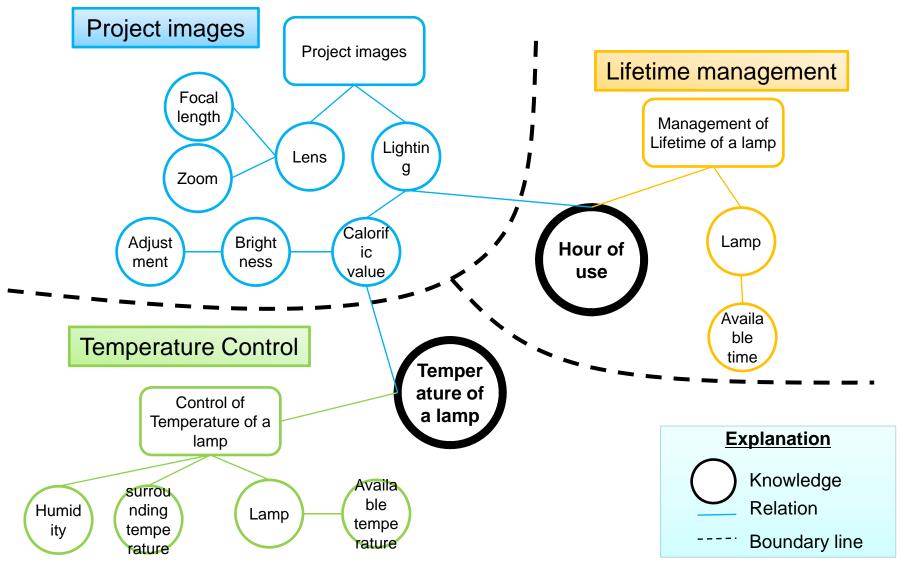

- Explain the software's purpose
- Describe the environment relevant to a rationale
- Review the followings
 - ✓ Is it arranged in order from the introduction to detailed arguments?
 - ✓ Is the need for the function and the premise described?
 - ✓ Is common knowledge described for series products?
 - ✓ Are terms defined and used consistently?
 - ✓ Are terms used with awareness of the appropriate subject, information, or role?

3-6. Domain-specific knowledge model

Features

- ➤ Show overview of domain-specific knowledge
- Show relation between sub-domains

Example


Projector:

Equipment which projects an image on a large-sized screen

Typical functions (Excerpt)

- ✓ Project images clearly
- ✓ Distortion compensation
- √ Keep a lamp condition
 - --- Temperature control of a lamp
 - --- Monitoring of the temperature of a lamp
 - --- Cooling of a lamp
 - --- Lifetime management of a lamp
 - --- Alarm display
 - --- Measurement of a hour of use

3-7. Example of Domain-specific knowledge model HITACHI HITACHI

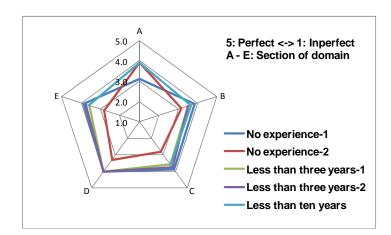
4-1. Application

Applied in five teams consisting of engineers engaged in software development for a series of products

(Automatic clinical chemistry analyzer)

Steps of implementation

- 1. Explain the meaning of domain-specific knowledge extraction (manager)
- 2. Indicate the working hours available (manager)
- 3. Organize teams and determine team leaders (extraction team)
- 4. Explain domain-specific knowledge extraction process (support team)
- 5. Devise a domain-specific knowledge extraction schedule (extraction team)
- 6. Conduct domain-specific knowledge extraction (extraction team, support team)


SECTION (TEAM)	NUMBER OF TEAM MEMBERS	NUMBER OF MEETINGS	NUMBER OF PRODUCTS REFERRED TO	TOTAL PAGES OF SOURCE DOCUMENTS	TOTAL PAGES OF OUTPUT
Α	8	13	5	1123	32
В	13	14	4	616	51
C	7	17	4	493	31
D	5	15	4	154	36
E	6	12	4	1617	33

4-2. Utilization

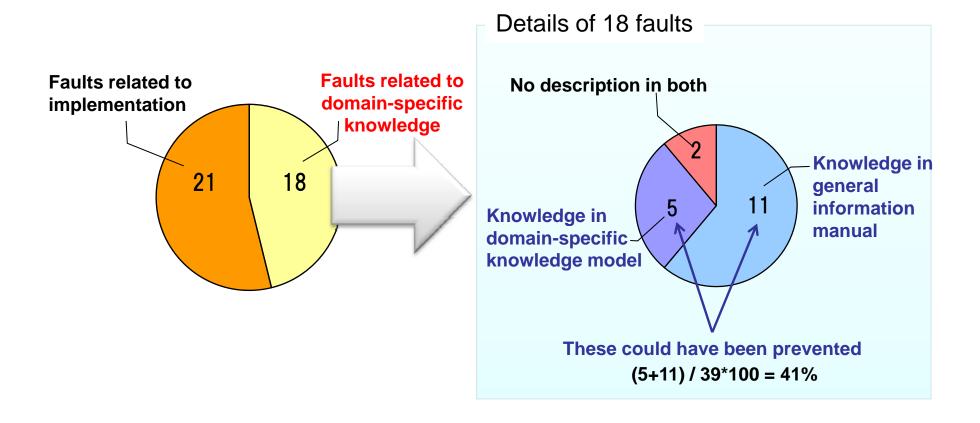
(1) Lecture system

Initial training for software engineers

- Five candidates:
- Two with no experience in software development
- Two with less than three years of experience

- One with more than three years but less than ten years of experience
- Team leaders were assigned to lecturers
- Two hours for reading and two hours for lecture

(2) Self-education system


Easy to access

People in other products departments also refer!!

4-3. Examination of quality improvement

Causal analysis of previous faults:

How many faults would have been eliminated?

4-4. Discussions

- (1) Availability of the suggested method
 - ✓ Little understanding of software development practice leads misinterpret
 - ✓ The result in a team reinforces a specialist's confidence
- (2) Evaluation of this attempt
 - ✓ The output by this approach is authorized.
 - ✓ A periodic review is necessary for maintain the contents
- (3) Utilization of tacit knowledge
 - Results has been used widely since the aim and the purpose are agreed

5-1. Concrusions

Suggested a practical method for extracting and describing domain-specific knowledge.

Extracting method

Using existing documents as a knowledge framework

Using questionnaire as the basis of knowledge extraction

-> Completeness and efficiency

Describing method

The general information manual: Guide to rationale

The domain-specific knowledge model: Overview of knowledge

-> Self-education at any time

The essential aim is to make every engineer notice the scope of his or her understanding of each domain!

Ending

Utilization of Domain-Specific Knowledge for Quality Software Design

@Hitachi High-Technologies Corporation

Research and Development Division Noriko lizumi

Hitachi High-Technologies

Bringing the frontier to the forefront.