
5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes

Takeshi Mori

NEC Corporation
Tokyo, Japan

ta-mori@ab.jp.nec.com

Ryou Kurashita

NEC Corporation
Tokyo, Japan

r-kura@aj.jp.nec.com

Naomi Honda
NEC Corporation

Tokyo, Japan
n-honda@ay.jp.nec.com

1. Abstract

In the department which the authors belong to, when there‟s the defect occurred at the customer field,
we apply the “ask why” method to analyze defect root causes and find a way to improve product quality.
However, it‟s said only highly skilled engineers can analyze defects. In this paper, we would like to
introduce “ask why” framework which anyone can apply to defect root cause analysis.

2. Analysis of Current Situation

The organization to which the authors belong has attained a CMMI level of 5. We defined the processes,
and then specified the purposes of each process. Our products were developed based on a V-shaped
model (Figure 1).

Figure 1. Development model
 [4]

On the other hand, we apply our “ask why” analysis method to analyze the root cause of defect
generated in the field, with the objective of implementing preventive maintenance measures (hereafter,

called [1+n procedure]
[４]

) to detect any remaining same-type defects in released products (Figure 2).

In this paper, the method that makes it possible to detect the defect root cause by repeatedly asking
why is called the “ask why” analysis method. To improve the quality of general-purpose products with
1+n procedure makes it possible to use the same solution to other products for several users. This
greatly contributes to preventive maintenance.

<Upstream Process>

<Testing Process>

Product

Detailed Design

Specification document

Source Code

BD: Basic Design

FD: Functionality Design
DD: Detailed Design
CD: Coding

UT: Unit Test
FT: Functionality Test

ST: System Test

UT: Unit Test PhaseDDD: Detailed Design

DDR: Detailed Design Review

DD: Detailed Design Phase

CDC: Coding

CDR: Code review

CD: Coding Phase

Functionality Test Items

ST: System Test Phase

Source Code

System Test Items

Source Code

FT: Functionality Test Phase

Unit Test

Items

Functionality Design

Specification document

Basic Design

Specification document

BDD: Basic Design

BDR: Basic Design Review

BD: Basic Design Phase

FDD: Functionality Design

FDR: Functionality Design Review

FD: Functionality Design Phase

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 2 of 8

 Figure 2. 1+n procedure
[4]

To accomplish this goal, it is important to accurately identify the root cause. The “ask why” analysis,
which assumes the development model shown in Figure 1, becomes fully effective in identifying the
cause upon the occurrence of a defect. Due to the fact that the use of “ask why” method has not sunk
into the department which authors belong to, however, the following problems were identified.

 The same concept may be expressed more than one way. This does not provide for further “ask
why” analysis.

 The step causing the defects exists upstream, but the defect is treated as a problem of coding
phase.

 The results of the analysis do not lead to appropriate countermeasures.

 The scope of the countermeasures can be narrowed down, but why the purpose of narrowing down
is necessary is unclear.

In the case of insufficient analysis of the root cause, the success rate of the 1+n procedure (the
percentage of remaining defects detected in released products) is low. In some typical cases, only a
superficial phenomenon analysis of the causes is performed, and the causes are analyzed with
practicable measures in mind. In these cases, viewpoints for the 1+n procedure or the scope of the
implementation of the 1+n procedure are misleading, resulting in a reduced possibility of detecting
defects that arise from any given cause.

Under these circumstances, it can be understood that the tips for “ask why” analysis, and the causes of
the occurrence of defects in the field, can be classified into some representative defects. Assuming that
the purpose of the “ask why” analysis is to implement 1+n procedure, it was found that a standard
sequence of analyses could be defined as a flow, and be classified into nine representative patterns
covering approximately 75% of the analyses. Through this experience, it will be possible to construct a
“ask why” analysis framework that enables anyone to easily analyze the root causes.

3. Proposed “Ask Why” Analysis Framework

3.1 “Ask Why” Analysis Framework

A framework, in which the root causes of field defects are analyzed to derive the 1+n procedure, is
called “ask why” analysis framework (Figure 3).

defect

Software product Z

Same-type

defects

Defect causal analysis

Why that post-release defect was injected?

Why that post-release defect was not detected by review?

Why that post-release defect was not detected by testing?

1+n procedure (additional
tests, reviews)
(based on defect causal analysis)

injected and
remaining because
of same reason

1 n

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 3 of 8

Figure 3. “Ask why” analysis framework

When the purpose is to implement 1+n procedure, the basic concept for the implementation of “ask
why” analysis is that the following two viewpoints are independently treated for analysis of these
causes.

1) Why a defect was injected? = <cause analysis for injection>

2) Why a defect was not detected by review or testing? = <cause analysis for overlook>

The proposed “ask why” analysis framework employs the concepts of “ „ask why‟ analysis flow” and
“defect cause analysis story” which define a standard sequence of analyses.

“Ask why” analysis framework:

The “ask why” analysis framework shows the flows in analyzing the different causes for the injection of
any defect, and for non-detection despite review and testing. These analysis flows are classified into
three types by definition: analysis flow to see why the defect was injected, analysis flow to see why the
defect was overlooked during review, and analysis flow to see why the defect was overlooked during
testing.

Cause analysis story for injection :

Due to the diversification of the types of root causes of defects that are injected, it is difficult to easily find
the root causes through the “ask why” analysis flow alone. Consequently, the processes subsequent to
the cause analysis flow for injection processes being identified are categorized per installation cause
type (e.g., out-of-bound access error, I/F error, etc.). Next, the different analysis flows are integrated
into a single story. These integrated flows are called the “cause analysis story for injection.”

The cause analysis story for injection classifies/organizes common root cause analysis flows based on
actual analysis results, and also defines the 1+n procedure derived from the results of cause analysis.

For reference, we regard it as being unnecessary to form a story for cause analysis of overlook, due to
the fact that there are few factors that depend on the types of the defects and the results of the cause
analysis for injection can be utilized.

3.2 Cause analysis from the Standpoint of injection

This section describes the cause analysis flow and story for injection, as the cause analysis from the
standpoint of defect injection.

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 4 of 8

(1) Cause analysis flow for injection

The outline of the cause analysis flow for injection is shown in Figure 4.

The most important point for the implementation of a cause analysis, from the standpoint of defect
occurrence, is to define defect symptoms, the direct program operations that cause them (hereafter,
called installation causes), so as not to misidentify the starting point of the analysis. Based on the
results of the analysis, it is important to determine the process in which the defect is generated. Figure 4
is detailed as follows.

<1> Describe, in a short sentence, the direct program operation that causes the defect, in an
affirmative way, such as “A did B”, in order to clarify the main points of the occurrence of the
problem. Clarify the installation causes that trigger the above direct program operation, using
terms such as “error” and “lacked consideration”. If the staff members are aware of these terms,
they will consciously think about what should be done to the installation to prevent the generation
of the defect.

<2> After defining the installation causes, determine the process that generates the defect.

<2>-1 First, determine whether a part to which the element that becomes the installation cause is to be
designed is located inside or outside the module (e.g., when the defect results from a buffer
overflow, determine whether the buffer should be designed inside or outside the module). If it is
judged that the buffer should be outside, the process causing the defect can be determined to be
an FD phase.

<2>-2 Assuming that it is judged that the causal element should be designed inside the module, if the
cause corresponds to a violation of the coding standards or common coding conventions, like a
collection of “don‟ts”, the process causing the defect can be determined to be a CD phase.

<2>-3 In cases other than the above example, judge the defect-causing process based on whether the
causal element is designed inside the module and whether this design method is clearly included
in the design specification. If the design is fully described in the specification, the process shall
be determined to be the CD phase, assuming that the defect is generated during coding in spite
of the full implementation of the internal design. If the design is not conducted or poorly
implemented, the defect-causing process shall be determined to a DD phase.

<2>-4 If the defect-causing process is determined to be the CD phase, the management or basic
technical measures, such as the re-education of coding standards, the verification of coding
under the coding standards, and re-education about coding input documents, will be effective.
On the other hand, if the defect arises from the internal or external design, the types of the root
causes will be diversified, depending on the details of the defect. For this reason, the “cause
analysis story for injection” described in (2) shall be used.

However, this analysis framework excludes requirement issues. If the defect-causing process lies in
any step prior to the basic design, another approach must be taken to track down the root cause.

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 5 of 8

Figure 4. Cause analysis flow for injection

(2) Cause analysis story for injection

Based on the installation causes determined in <1> of Figure 3, the applicable story shall be selected
from the prepared cause analysis stories for injection, according to which the analysis is performed. In
the absence of a relevant story, a new analysis story is required.

The authors‟ organization has the following nine types of standard analysis stories. The use of these
nine types of stories is known to cover about 75% of the analyses.

Table 1. Analysis stories of the relevant organization

Story name Description (Installation cause)

Out-of-bound access error Access to areas beyond buffer space or NULL access

I/F error Recognition error of argument, return value and function specifications
about function I/F

Exclusion control error Resource exclusion control error in multi-process (thread)
environment

Mistaken error processing Mistaken error processing, omission of error processing

Threshold value/boundary
value error

Mistaken processing of threshold value/boundary value

Startup/termination error Mistaken processing of startup/termination at startup/termination of
AP and server

String operation error Mistaken processing of special character or Japanese character

I/F error

Bug cause analysis

story

Mistaken exclusion control

Bug cause analysis

story

Identify the installation cause

Identify a direct program operation causing the event

*Violation of conventions, a
collection of don‟ts, etc.

Yes

No

Event identification

Mistaken CD
Mistaken design

Classify the error into design technique issues and I/F issues

with other departments

Out-of-bound access error

Cause analysis story for

injection

Apply an analysis story

prepared for each

installation cause type

Inside the module

Outside the module

At what phase should be the
element that becomes the

installation cause designed?

Inside or outside the module?

Does the installation cause

result from common coding

error?

Yes

No

<2> Identification of defect-causing process

Basic technical error

Cause analysis story

for injection

Management issues

Case analysis story

for injection

FDDDCD CD

Cause

Identified defect-causing

process

Is the cause designed inside

the module, and fully included

in the design specification?

<1>

<2>-1

<2>-2

<2>-3

<2>-4<2>-4

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 6 of 8

codes

Resource release error Omission of resource release

Mistaken processing of
unexpected cases

Mistaken processing of cases where unexpected message/object
arrives

As an example of a cause analysis stories for injection, the story for an “out-of-bound access error” is
described in Figure 5. After the identification of a defect-causing process, it is determined whether an
installation cause is designed in the applicable process, as a starting point. The starting point causes a
branch to assumed cases, thereby deriving a root cause and 1+n procedure for each case.

At the present moment, the use of this cause analysis story for injection can cover all field defects for
more than 10 “out-of-bound access error” cases which occurred in the relevant organization. However,
we think that “assumed cases” are likely to exist that cannot be envisaged now. For these cases, “other”
is explicitly placed. This case requires a new root cause analysis and the story will be expanded based
on the results of the analysis.

Figure 5. Out-of-bound access error cause analysis story

3.3 Cause Analysis from the Standpoint of overlook

Cause analysis flows from the standpoint of overlook during review and testing are shown in Figure 6
and Figure 7. These flows provide a direction leading to the root causes. The flows can be used to find
almost all root causes. For the implementation of the measures, the measures must be detailed in
consideration of the determined reason for injection.

A common case is that where a defect is missed because a reviewer is improper (a typical case is that
in which the staff of Development group for closely linked components do not participate in the review).
For the 1+n procedure, the sufficiency of the reviewer must be verified based on all the review records.
The parts missed by the reviewer shall be re-reviewed after assignment of a new reviewer. For the
re-review, it is important to conduct a review with a focus on the reason for injection.

Overflow caused by

unexpected data

volume

Reference to object

occurs at the

unexpected timing,

causing NULL access

It is necessary to

check the basis of
estimation of a buffer

size.

It is necessary to check

that the specifications are

defined with state

transition and sequence
at other points causing

timing problems.

It is necessary to check

against the I/F specification

whether there is any

mistaken use of API.

Other

Cause resulting from the method for the

description in the design document

(ambiguous description,

nonconformance to standards)

It is necessary to check that

there are other same

problems in the method for
description of the design

document.

Yes

Case where the causal element

was insufficiently included in the

design document

No

It was mistakenly

recognized that

arguments would not

be called in NULL,

leading to NULL access

1+n

procedure

Root cause

Assumed case

Cause resulting from

mistaken recognition

of I/F specifications

New

analysis is

required

Case

It is difficult to

understand the

description in the

design document,

leading to mistaken

interpretation

Start

Cause resulting

from mistaken

estimation of

buffer size

Cause resulting from

unclear specifications for

access timing

Case where the causal element was not designed with the purpose of NULL or

overflow check

(The occurrence of NULL access or overflow could not be assumed)

Was the element

that becomes the installation cause designed in the

error-causing process?

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 7 of 8

Figure 6. Cause analysis flow for outlook during review

Figure 7. Cause analysis flow for outlook during testing

Yes

No
Mistaken selection of

review target

Yes

Mistaken input and

reference documents

Mistaken reflection of

review results

Yes

Review under omission of

review standpoint and from

the unclear standpoint

: 1+n procedures

No

Yes

No

Was there a review

standpoint that enables the

detection of the relevant

defect?

No

Were related documents proper?
No

Yes

Other: Improper review and reading methods

Were the relevant

deliverables in the

identified defect-causing

process reviewed?

Was the relevant defect detected during review?

Did a reviewer with the

ability of detecting the

relevant defect participate in

the review?

Improper reviewer

Start
: Root cause

Review of unreviewed deliverables

Check that other review results are

correctly incorporated into the

deliverables

Check the sufficiency of the reviewer based

on review records and re-review the parts

missed by the reviewer after assignment of

a new reviewer

Check that the review standpoint was clear

and sufficient based on review records and

re-review insufficient parts after re-

examination of the standpoint

Re-check that there were any errors

in input and reference documents

during other review

Re-review with proper review and reading methods

Yes

・Mistaken description of test

results/environment

・Mistaken verification of test results

・Mistaken description of assumed

results

No

Improper validation and application

of general test method

Yes

Mistaken selection of test items to

be implemented

Were there test items that can detect the relevant defect?

Was the relevant test items implemented?

Were all standpoints

of the non-functionality

test screened out?
Omission of standpoints of

the non-functionality test

Was the element that became

the installation cause designed under

FD or DD?

No

Yes

Omission of the test design review (to review flow)

Was the description of FD or

DD enough to design the test

items?

Start

: 1+n procedures

: Root cause

No

No

Were all standpoints of the

functionality test screened out

by inputting the design

document for the relevant

process?

No

No

Yes

Yes

Yes

Re-check test results

Re-check “assumed results” in

the test specification

Check the basis for the selection

of test. Check test items that

must be implemented

Re-check of sufficiency of the

test design review

Re-check test omissions that

result from the setting and

arrangement of chapters and

from the detail levels in design

document

Improper description method and

detail level in design document

Check the sufficiency of the test

in terms of user standpoints, and

the test method applied

Mistaken input document and

omission of standpoints of the

functionality test

Re-check other omissions of

functionality test standpoints in

the test design document based

on the specification

Re-check other omissions of

non-functionality test standpoints

in the test design document

based on the specification

5th World Congress for Software Quality – Shanghai, China – November 2011

Proposal of “Ask Why” Framework to Analyze Defect Root Causes Page 8 of 8

4. Effectiveness and Discussion

The “ask why” analysis framework presented in this paper was promoted throughout the organization by
revising old forms and providing education about the analysis. As a result, a success rate of the 1+n
procedure was increased from 17% to 38%. The cases in which only a superficial phenomenon analysis
is performed or an analysis based on practicable measures is performed were reduced. On-site staff
members‟ inputs and opinions included that they deepened their understanding of the analysis
standpoints and that in the analysis by an inexperienced person in charge, the initial quality of the
analysis seems to be improved. They are gaining the intended effectiveness.

Furthermore, the 1+n procedure were successfully taken only by specific groups before the application
of this method, but after the application of the framework, the rate of success of the measures was
increased in almost all groups (of the eight groups, the number of groups for which the measures
succeeded increased from 2 to 7). All personnel have started to feel the effect of the “ask why” analysis
framework as a means of easily finding root causes.

5. Conclusion

It has been said that because of the difficulty to use the “ask why” analysis method only highly-skilled
engineers can detect root causes with the method. But in the organization promoting the
standardization/establishment of the SW process, it was found that it is possible to break the procedure
of “ask why” analysis down into patterns for the purpose of implementation of 1+n procedure. The
concepts presented in this paper were applied to other departments that develop the same
general-purpose software packages. As a result, it was found that the nine types of cause analysis
stories for injection covered in this paper could be used to find about 65% of all field defects. We expect
that this framework can be successfully applied by other departments.

We will now accumulate case studies on the “ask why” analysis and review the sufficiency and
applicability of the “ask why” analysis framework presented in this paper.

References

[1]Hitoshi Ogura: How to Make Full Use of "Ask Why" Analysis, JIPM Solutions, 1997

[2]Hayakawa, Ishii, et al.: Applying "ask why five times" method on software development, Collection of
Papers Presented in Software Quality Symposium 2008, Union of Japanese Scientists and Engineers,
pp.185, 2008

[3]Naomi Honda: Beyond CMMMI Level5 – Comparative Analysis of Two CMMI Level5 Organizations-,
4

th
 World Congress for Software Quality-Bethesda, Maryland, USA, 2008

[4]Naomi Honda: Software Quality Accounting System - Quality assurance technology that supports
high quality software development at NEC, JUSE Press, Tokyo, 2010.

