
5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design

Noriko Iizumi
Hitachi High-
Technologies
Ibaraki, Japan

Tomoko Tomiyama
Hitachi High-
Technologies
Ibaraki, Japan

Atsuko Koizumi
Hitachi

Kanagawa,
Japan

Atsushi Takahashi
Hitachi High-
Technologies
Ibaraki, Japan

Abstract

Domain-specific knowledge is highly important in embedded system development. In order to design
software based on an appropriate rationale, engineers have to understand this domain-specific knowledge
well. Usually, domain-specific knowledge is accumulated in individuals through experience, and there is no
opportunity for sharing. This makes utilizing this valuable information in a team difficult. This paper suggests
a practical method in which existing documents are used as a knowledge framework, for extracting and
describing domain-specific knowledge. The use of this method allows for the creation of a questionnaire
that extracts the necessary knowledge from specialists without introducing any notable increase in their
workload. The extracted knowledge is described by two types of documents: general information manuals
that explain using text, and a domain-specific knowledge model that shows the scope and relationships of
the knowledge using a diagram. Domain-specific knowledge was extracted and shared by applying this
method to five teams. The effect on the quality of software design was examined by causal analysis of past
design faults. The results showed that 41% of the past faults would be prevented when utilizing the
extracted domain-specific knowledge.

1. Introduction

In software development, the quantity of domain-specific knowledge as well as software development skill
generally affects the software product’s quality. When developing a series product, domain-specific
knowledge, such as the user environment, the purpose of product installation, and cooperation with other
related products, is especially required for an appropriate design. Hitachi High-Technologies develops and
offers series products: semiconductor inspection equipment, DNA sequencers, and automatic clinical
chemistry analyzers. Therefore, domain-specific knowledge is also required to design these products
based on an appropriate rationale.

Although the importance of domain-specific knowledge is recognized, it is often not transferred adequately.
There are probably two reasons for this. One is that specialists are not always aware of all the valuable
knowledge they have obtained organically through experience. Although there are some studies of sharing
domain-specific knowledge [1] and of a support system that facilitates communication [2], they are not used
in actual practice. Another reason for the inadequate transfer of domain-specific knowledge is that the
method to transfer domain-specific knowledge depends on the people involved. On-the-job training (OJT) is
one approach to transfer knowledge or skill from person to person. However, in the current situation, where
global outsourcing has recently emerged and many diverse members have been engaged in development,
OJT is extremely difficult.

The primary purposes of this study are to determine the valuable knowledge held by specialists, to extract
comprehensive and unbiased knowledge from specialists, and to describe the extracted knowledge so that
it may be transferred without misunderstanding. In this paper, a practical method for the above is suggested
with an actual application result. This chapter describes the background and purpose of the present study.
In Chapter 2, concerns regarding the quality of software design are indicated, and related studies are
reviewed. Chapter 3 describes the method for extracting and describing domain-specific knowledge.
Chapter 4 presents the application results and the effect on the quality of software design. Chapter 5
provides a discussion of the method and its application. Chapter 6 presents a summary of the findings.

Noriko Iizumi
Hitachi

High-Technologies
Ibaraki, Japan
iizumi-noriko

@naka.hitachi-hitec.com

Tomoko Tomiyama
Hitachi

High-Technologies
Ibaraki, Japan

tomiyama-tomoko
@naka.hitachi-hitec.com

Atsuko Koizumi
Hitachi, Ltd.

Kanagawa, Japan
atsuko.koizumi.zt

@hitachi.com

Atsushi Takahashi
Hitachi

High-Technologies
Ibaraki, Japan

takahashi-atsushi
@naka.hitachi-hitec.com

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 2 of 8

2. Deterioration in Software Design Quality Caused by Lack of Domain-Specific Knowledge

In this chapter, the relationship between domain-specific knowledge and the quality of software design is
clarified. In addition, conventional methods to transfer domain-specific knowledge and preceding studies
are reviewed. Then, the importance of sharing domain-specific knowledge widely is discussed, and the
question addressed in the present study is defined.

2.1 Concerns Regarding Quality of Software Design

Development of a series product has frequently been seen in embedded systems. In fact, our flagship
products undergo series development and are developed over ten years or more. In this situation,
engineers have been engaged in development of the same product for a long time. They accumulate partial
domain-specific knowledge while managing part of the system. As this activity is repeated, awareness of
the importance of transferring knowledge that only a particular engineer possesses is lost.

Recently, with improvements in hardware performance, embedded system software has grown in size to
more than one million lines of code. Accordingly, the composition of software development teams has
changed from a few select members to many diverse members. Thus, the scope of development that an
individual can experience has become limited. This tendency also limits their opportunities to acquire
knowledge through work.

Development of large-scale software by many diverse engineers causes some difficulties regarding the
quality of software design. Engineers with little experience of the target product interpret demands and
design specifications in the light of their limited knowledge. Since the engineers may understand neither the
demand nor the intention behind a specification correctly, design faults are generated. It is difficult to find
this type of design fault only by testing. Therefore, the quantity of domain-specific knowledge affects the
quality of software design in large-scale software development by many diverse engineers.

2.2 Conventional Methods for Transferring Domain-Specific Knowledge and Previous Studies

To date, concern has focused on tacit knowledge. The conventional methods for transferring
domain-specific knowledge and previous studies on knowledge sharing are outlined below, and an
unsolved problem is clarified.

(1) Conventional methods to transfer domain-specific knowledge

There are two approaches to transfer experiential knowledge, the personalization strategy and the coding
strategy [3]. In the personalization strategy, knowledge is transferred from person to person. This approach
is based on the idea that experiential knowledge accumulates only in a person who learned it through
experience. OJT is a typical example. Although OJT used to be effective, knowledge cannot be transferred
only by OJT as large-scale software development by many diverse engineers increases globally. In the
coding strategy, knowledge is transferred by extraction and coding. This approach is based on the view that
all the engineers can transfer experiential knowledge by enabling easy access to it in a database. This is
also called the person-to-documents approach. A checklist is a typical example. A checklist is a document
that transfers knowledge of countermeasures obtained from previous faults as lessons or know-how.
Although a checklist is quite effective as a prescription, the effect is lessened if there is no corresponding
description.

 (2) Previous studies on knowledge utilization

Studies of knowledge management, which changes individual knowledge to valuable systematic
knowledge, have been conducted since 1990. Their purpose is to enable the use of individual knowledge by
anyone at any time. Moreover, studies on domain analysis have been conducted since the mid-1980s, at
the same time as the modeling that suggested software reuse. Domain analysis is an attempt to identify the
objects or operations that an expert thinks are important, as well as the relationships between them [4]. The

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 3 of 8

main problems in domain analysis are knowledge representation and knowledge acquisition [5]. Various
expressive forms have been suggested for knowledge representation. However, knowledge acquisition has
not been examined sufficiently.

Among the conventional method and previous studies, little work has been done concerning how to define
and extract valuable knowledge from individuals. The important reasons for this are that the knowledge
source is a person and the knowledge cannot be seen from the outside. A person who holds valuable
knowledge often does not know how to offer or demonstrate it. On the other hand, those who are eager to
obtain knowledge cannot explain what knowledge is necessary, because they do not grasp the whole
picture.

2.3 Problem to Be Solved

When software is developed by many diverse engineers, almost all engineers must work with only limited
knowledge. If all the engineers understand the relevant domain-specific knowledge, they can achieve a
high-quality design based on an appropriate rationale.

In this paper, the valuable knowledge that should be shared is defined as "the domain-specific knowledge
and rationales that must be understood when designing software." In an effort to complement engineers’
limited domain-specific knowledge, two approaches are suggested. One is a method for extracting
accumulated knowledge from specialists using existing design documents as a source of knowledge.
Another is a method for describing domain-specific knowledge so that engineers can understand it well and
apply it to actual software design. When domain-specific knowledge is organized and the engineers
understand the rationale behind the product, the quality of software design will improve.

3. Method for Extracting and Describing Domain-Specific Knowledge

This chapter introduces a practical method for extracting and describing knowledge. First, the knowledge to
be extracted is defined. Next, the method for extracting the target knowledge is shown. This method uses
existing documents as a knowledge framework. Finally, a description of the extracted knowledge is given.

3.1 Definition of Knowledge That Should Be Extracted for Use in Software Design

Practical knowledge and theoretical knowledge are obtained during software development. Practical
knowledge is understood through experience and includes not only know-how but also mental models and
beliefs. Theoretical knowledge does not require experience and can be realized from books, magazines,
and other sources. This study treats both types of knowledge, which are expressed verbally in order to
transfer comprehensive content widely. The content of the extracted knowledge is the rationale behind the
product, including the historical background. The tacit knowledge related to the software quality is also
included. This kind of knowledge is defined as follows.

For understanding domain:
- The user’s business
- The purpose of installing the equipment
- The user’s operation flow
- Social motivations such as laws and regulations

For quality software design
- The historical reasons for changes of requirements or demands
- Background of the hardware technology
- Background of the software technology

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 4 of 8

3.2 How to Extract Domain-Specific Knowledge

There are three features in the suggested method: formation of a team, a framework of domain-specific
knowledge based on existing documents, and an interview questionnaire. This method is designed to be
conducted by engineers, because the extracted knowledge should be utilized by engineers themselves.

First of all, a team of two or more engineers, including one or more specialists who are likely to have
experiential knowledge, is formed. At least two people are chosen to be a writer and reviewer, who maintain
the objectivity of the review. For example, a software engineer might be assigned to be a writer, and a
specialist might be assigned to be a reviewer as well as a knowledge provider.

Next, the source of domain-specific knowledge is selected in order to form the basis of the knowledge
framework. Operation manuals, user requirements, and design specifications are suitable sources of
knowledge. Since common and particular knowledge should be distinguished in series product
development, the design specifications of two or more products in the series are referred to.

Then domain-specific knowledge is extracted by the following steps.

Step 1: Knowledge determination

The writer provisionally determines the scope of the knowledge using the table of contents of the
existing design specifications. The writer considers the items to extract and makes a table of contents
for a new document, a general information manual explained in section 3.3 (1). It is essential to
consider not the structure of a function, but the structure of the knowledge.

Step 2: Information collection

From the design specifications of two or more products in the series, the writer looks for descriptions
corresponding to the domain-specific knowledge. The writer then makes a knowledge framework by
copying and pasting them into the new document.

Step 3: Information arrangement and question compilation

The information pasted into the new document may itself be domain-specific knowledge, or it may be
a key to domain-specific knowledge. Thus, the writer should arrange it carefully and generate a
questionnaire. This questionnaire becomes an entry point to knowledge extraction from a specialist.
To avoid any bias in the writer’s thinking generated by his or her experience, the writer must list all the
things about which he or she has doubts.

Step 4: Knowledge extraction from specialists using interview questionnaire

Using the questionnaire created in step 3, the writer extracts knowledge from a specialist. Since a
specialist's reply is often premised on different background knowledge, the writer needs to ask
questions that reveal the premise. In addition, the writer discerns how detailed the information must be.
This helps avoiding bias in the information and reduces the specialist's high workload.

Step 5: Knowledge description

Based on the collected information, the writer arranges and documents the domain-specific
knowledge. The new documents describing the domain-specific knowledge are a general information
manual and a domain-specific knowledge model explained in sections 3.3 (1) and (2). The new
documents are finally reviewed by the specialist.

By following the above steps, which reduce the specialist's workload, the background knowledge and
rationale missing from the existing documents can be clarified. Furthermore, when others ask questions,
the importance of knowledge that is obvious to the specialist becomes clear. This is an efficient and widely
applicable method for extracting comprehensive domain-specific knowledge.

3.3 How to Describe Domain-Specific Knowledge

The extracted domain-specific knowledge is utilized to complement the engineers’ limited knowledge.
Considering the high resource mobility in recent software development, it is necessary to enable the study

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 5 of 8

of domain-specific knowledge at any time by a newly arrived engineer. Thus, the extracted knowledge is
expressed as a general information manual using text and as a domain-specific knowledge model using a
diagram.

(1) General information manual

The extracted knowledge is expressed as a general information manual. This document explains the
purpose and the environment in which the product is used, so the engineer can understand the rationale
behind the product. If all engineers can understand the background and the rationale for why the software
exists and why it must perform certain functions, requirements can be appropriately met, and better design
judgment can be achieved. The general information manual is written and reviewed with attention to the
following points.

 Order of the table of contents.
It is not suitable to compose the table of contents on the basis of functionality. Since the table of
contents should make it easy to find knowledge required by new engineers, definitions of terms are
given first, and the user’s operation flow is described next.

 Description of the purpose.
It is good to think about the user’s viewpoint to understand why the product must behave in a certain
way and why a function is required. The subject of design specifications is generally the product, and
its behavior and functions are described. In contrast, the general information manual explains the
user’s operation flow, the user’s purpose, and related matters. This increases awareness of
unconscious premises and the background of the product.

 Lead sentences.
A lead sentence is inserted at the beginning of each chapter or paragraph in order to clarify the point
to be explained. Since text may be interpreted differently by different readers, it is effective to provide
the information that the writer wants to transfer in a lead sentence at the beginning of each chapter.

 Description of the information common to products in a series.
Whether the information is a basic matter common to all products in a series or whether it is a specific
matter for only a particular product should be considered carefully. Mainly, basic matters common to
products in a series are described in the general information manual.

 Review of the following

- Is the manual arranged in order from the introduction to detailed arguments?
- Are the need for the function and the premise described?
- Is common knowledge described for series products?
- Are terms defined and used consistently?
- Are terms used with awareness of the appropriate subject, information, or role?

(2) Domain-specific knowledge model

Using the general information manual described
above, new engineers begin to partially understand
the domain-specific knowledge. However, the scope
of domain-specific knowledge and the relationships
between sections are difficult for new engineers to
grasp thoroughly. Thus, a domain-specific knowledge
model is created on the basis of the general
information manual to clarify the relationships between
the sections. A domain-specific knowledge model
expresses relationships using nodes and arrows. A
node indicates knowledge or a basic concept, and a
line indicates the relationship between them.

Figure 1 shows an example of a domain-specific
knowledge model. The dotted lines represent the
boundaries between sections. Lines that cross these Figure 1. Example of domain-specific

knowledge model.

Section A

Section B

Section C

Section D

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 6 of 8

boundaries represent knowledge relevant to both sections. Representing the knowledge as a diagram
enables engineers to grasp the scope of the target domain and see what knowledge is shared between
sections.

4. Results

This chapter presents an application of the suggested method and the utilization of the extracted
domain-specific knowledge. The effect of this method on software quality is also examined.

4.1 Application of the Method

The goal of the suggested method is to utilize domain-specific knowledge for software design. To confirm
the practical applicability of this method, it was applied in five teams consisting of engineers engaged in
software development for a series product.

(1) Preparation

An automatic clinical chemistry analyzer was chosen as the focus of the domain-specific knowledge. The
required knowledge was the user's workflow and fundamental knowledge regarding an analyzer, such as its
purpose and the principle of the analysis. Thus, the knowledge to be extracted is defined as the
fundamental content common to series products (general knowledge). It is focused on the content useful for
new engineers. Five teams were formed to cover every section of the target domain. Thirty-nine engineers
each chose a section of interest and joined the appropriate team. Each team had from 5 to 13 people. A
leader, an assistant leader, and advisers (specialists) were placed on each team. The software
development experience of team members varied from 1 to 26 years. The source of domain-specific
knowledge was the design specifications of four or five distinct series products.

(2) Implementation

This activity was performed in a top-down manner as part of the team’s duties. The steps of implementation
are as follows.

1) Explain the meaning of domain-specific knowledge extraction to all participants (manager).
2) Indicate the working hours available for domain-specific knowledge extraction (manager).
3) Organize teams and determine team leaders (extraction team).
4) Explain the domain-specific knowledge extraction process (support team).
5) Devise a domain-specific knowledge extraction schedule (extraction team).
6) Conduct domain-specific knowledge extraction (extraction team and support team).

(3) Actual results

The teams worked from May to September of 2010. The activity was promoted so that knowledge extraction
would be completed in September. The support team encouraged the extraction team when deadlock
occurred. The support team also provided rules for text creation in order to unify each writer’s style and
improve readability, as well as to reduce wasted effort. The results of this activity are shown in Table 1.

Table 1. Results of general information manual creation

SECTION
(TEAM)

NUMBER OF
TEAM MEMBERS

NUMBER OF
MEETINGS

NUMBER OF
PRODUCTS

REFERRED TO

TOTAL PAGES OF
SOURCE DOCUMENTS

TOTAL PAGES
OF OUTPUT

A 8 13 5 1123 32
B 13 14 4 616 51
C 7 17 4 493 31
D 5 15 4 154 36
E 6 12 4 1617 33

4.2 Utilization of Extracted Domain-Specific Knowledge

The extracted domain-specific knowledge described in the general information manual and the
domain-specific knowledge model are shared among engineers who are new to a project and engineers

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 7 of 8

with limited knowledge of the target domain. Two methods to transfer domain-specific knowledge were
used: lectures and self-education.

(1) Lecture system

The general information manual was used in the initial
training for software engineers. A total of five candidates
were trained: two with no experience in software
development, two with less than three years of experience,
and one with more than three years but less than ten years
of experience. The three engineers with experience in
software development had limited domain-specific
knowledge. The lecturer explained the general information
manual after the engineers had studied it for two hours.
After the lecture, the engineers’ understanding was
surveyed using a questionnaire. The responses shown in
Figure 2 indicate that almost all of the engineers understood the material, and their understanding was
mostly independent of the level of software development experience.

(2) Self-education system

The five general information manuals were saved on a server so that engineers who were not involved in
their creation could also access them. New engineers were asked to read the manual beginning in October
2010. With self-education, an overview of the domain-specific knowledge can be grasped in one to two
days. In an unexpected result, people in other product departments used this resource. Furthermore,
people use the general information manual and domain-specific model as a checking tool to confirm the
scope of their knowledge.

4.3 Examination of the Effect on the Quality of Software Design

The purpose of this study was to prevent the deterioration in software quality caused by lack of experiential
knowledge. Of course, the extracted domain-specific knowledge has already been provided to the
engineers. However, to check whether software quality has improved as intended because the engineers
complemented their domain-specific knowledge, development must be tracked for several years. As an
alternative method, a causal analysis of previous faults was used to examine how many faults would have
been eliminated.

This examination was conducted for one of the five sections for which information was extracted; there were
39 faults in this section (Figure 3). Eighteen were relevant to domain-specific knowledge, and 11 of those
could have been prevented if engineers understood the contents of the general information manual. Five
other faults required knowledge shared between sections. Thus, these faults could also have been
prevented if engineers understood the relationships between sections given by the domain-specific
knowledge model. A total of 41% of the faults (= (11 + 5)/39) could have been prevented using extracted
domain-specific knowledge.

5. Discussion

In this chapter, the availability of the suggested method, an evaluation of this application, and the utilization
of tacit knowledge are discussed on the basis of the results of the application of the proposed method.

Figure 3. Classification of past faults.

Figure 2. Degree of understanding.

1.0

2.0

3.0

4.0

5.0
A

B

CD

E

No experience-1

No experience-2

Less than three years-1

Less than three years-2

Less than ten years

5: Perfect <-> 1: Inperfect
A - E: Section of domain

21 18
115

2

These could have
been prevented

Faults related to
implementation Faults related to

domain-specific
knowledge

Knowledge in
domain-specific
knowledge model

No description in both

Knowledge in
general
information
manual

5th World Congress for Software Quality – Shanghai, China – November 2011

Utilization of Domain-Specific Knowledge for Quality Software Design Page 8 of 8

(1) Availability of the suggested method

Engineers who had less than one year of software development experience were unskilled at extracting
basic information related to domain-specific knowledge from the existing design specifications. They could
not distinguish whether something was background or only a specification, because they had relatively little
understanding of software development practice. Engineers with three years or more of software
development experience could distinguish domain-specific knowledge needed for software development
even if the domain varied. On the other hand, it became clear that the specialists were not always confident
about the knowledge they accumulated experientially. Creating the output using teamwork solves these
problems.

(2) Evaluation of this attempt

In fact, there were already some documents made by veteran engineers explaining details of domains.
However they have not been utilized, because there were various intentions behind their creation or they
had only partially complete contents. The suggested method has a clear step defining domain-specific
knowledge and its scope. Future work will address the maintenance of the contents. A periodic review is
planned based on when new engineer assignments occur.

(3) Utilization of tacit knowledge

The general information manual and domain-specific knowledge model made it easy for new engineers to
acquire knowledge. Until now, engineers have understood domain-specific knowledge primarily through
experience. Alternatively, engineers had to obtain the necessary information by simply reading the existing
specification or finding it directly from a specialist. The opportunity cost model reveals that this method is
extremely effective for both engineers and specialists.

6. Conclusions

The importance of utilizing domain-specific knowledge in large-scale software development by many
diverse engineers is unquestionable. This paper suggested a practical method for extracting and describing
domain-specific knowledge. Using existing documents as a knowledge framework and a questionnaire as
the basis of knowledge extraction is a key feature ensuring the completeness of the knowledge and
reducing the specialist’s workload. This method also enables the extraction and description of
domain-specific knowledge by engineers who are unfamiliar with the domain. Domain-specific knowledge is
described in two types of document: the general information manual using text and the domain-specific
knowledge model using a diagram. Using these documents, engineers can acquire domain-specific
knowledge with self-education at any time.

In conclusion, the essential aim of this effort is to make every engineer notice the scope of his or her
understanding of the domain. In this way, adaptable thinking and the habit of design based on an
appropriate rationale can be mastered. This supports the organization’s capability as well as the quality of
its designs.

References

[1] Nakayama, Y., DFACE-KM Knowledge Management Methodology, Toshiba Review Vol.60 No.12
pp.48-49, 2005.
[2] Umeki, H. and M. Horikawa, Platform for Community-Based Collaborative Knowledge Creation, Toshiba
Review Vol.56 No.5 pp.14-18, 2001.
[3] Davenport, T.H., Integrating Knowledge Management into the Organization, Diamond Harvard Business
Review pp.26-36, September 1999.
[4] Neighbors, J.M., The Draco Approach to Constructing Software from Reusable Components, IEEE
Transactions on Software Engineering Vol.10 No.5 pp.564-573, 1984.
[5] Prieto-Diaz, R., Domain Analysis: An Introduction, ACM SIGSOFT, Software Engineering Notes Vol. 15
No.2 pp.47-54, 1990.

