
5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP

- Application of XDDP to the Car Navigation System -

Keiji Kobata
DENSO E&TS TRAINING
CENTER CORPORATION

Ohbu, Japan
keiji_kobata@denso.co.jp

Eiji Nakai
DENSO TECHNO
CORPORATION

Kariya, Japan
eiji_nakai@denso.co.jp

Takahiro Tsuda

DENSO CORPORATION
Kairya, Japan

takahiro_tsuda@denso.co.jp

Abstract

In this paper, we describe the experience to improve quality and productivity in car navigation system
development using XDDP (eXtreme Derivative Development Process). Maintenance process is used to
develop new software product. Defects and problems are caused by insufficient analysis of base software.
Therefore we applied XDDP to our developments. XDDP is a rational and practical process for
enhancement-based development. Productivity was improved by 26% and no defects were detected in QA
tests. Then we applied XDDP to the developments where engineers lack information about the base source
code. With software engineering techniques, quality and productivity were improved dramatically compared
to the case when XDDP alone was used.

1. Introduction

The source code of navigation system is expanding in size and getting more complicated due to the
increase of navigation functions. High quality and on time delivery are required in navigation system
because it is installed to automobiles.

Most software projects for car navigation systems in our company are classified as enhancement-based
development. This type of development is to develop a new software product by adding, changing or
deleting functionality to an existing software product. In a large-scale software enhancement project, it is
very difficult to identify all change points in the source code completely and estimate the impacts of the
changes with high accuracy.

The projects where engineers lack information about the base software are increasing recently. In such
projects, it is much more difficult to extract change points and estimate the impact. We need more time to
achieve required quality and productivity.

In our developments, the base documents are modified to enhance the source code with maintenance
process [1]. The information about changes is added to the base documents and the impact of the changes
is estimated with them. It is tough to identify change points and estimate the impact correctly.

Therefore we applied XDDP to our developments. XDDP is a development process specialized in
enhancement-based development. It is a well-known process in Japan. The feature of XDDP is that the
documents only about change points are made and reviewed in the development. From these documents,
change points can be identified and the impact of changes can be estimated.

First, we applied to a general project in navigation system and confirmed the effect of XDDP in quality and
productivity. We analyzed the result and showed the effect in detail. Second, using the information we had
got from the experience, we applied XDDP to the projects where engineers in charge lacked information
about base software. We suggested two techniques in XDDP to make requirement specifications with base
source code. These two techniques are used in accordance with knowledge level of engineers. By these
techniques, quality and productivity were improved compared to the case when XDDP alone was used.

The constitution of the paper is as follows. In chapter 2, problems are discussed in our development
process. In chapter 3, we introduce a summary of XDDP and USDM (Universal Specification Describing
Manner). In chapter 4, the results of applying XDDP to a general project are shown in quality and
productivity. And we apply XDDP to the projects where engineers lack information about the base software.
We suggest two techniques to make requirement specifications and discuss the effect of them. Chapter 5 is
a conclusion of this paper.



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 2 of 8

2. Problems in Our Development Process

Navigation systems have been developed using maintenance process to modify base source code. In the
process, we make requirement specifications and design documents to identify change points and estimate
the impacts of changes.

Figure 1 shows our development process. When
new functions are added, engineers make
requirement specifications and design documents
in new development process. For changes of
existing functionality, we use maintenance process.
Change points in requirements are added to the
base requirement specifications to make
requirement specifications. And change points in
requirement specifications are added to the base
design documents to make design documents as
well.

It is very difficult to specify other change points and
estimate the impact from modified base documents.
One change in base source code leads to other
changes in other components of different functions.
Especially in high performance embedded system
such as navigation system, the added source codes
affect so many functions that we have difficulty in
identifying change points and estimating the impact.
So we have a high risk that problems and defects
will occur, even if one change point (several source
codes) is modified in base source code.

We also have a problem that it is not clear where we
should write the change points caused by adding
functions in base source code. The change points can’t be added to base requirement specifications easily
and it seems strange that change points are described in requirement specifications for adding functions. In
many cases, they are missing in documents and serious problems and defects can occur.

In our developments, the documents about adding functions are reviewed so much, but changes of base
software tend to be left to the engineers in charge. In other words, identifying change points and estimating
the impact entirely depend on the engineers’ skill. Some engineers change the source code as soon as they
find a change point in the source code. The reason is that they can’t extract change information from base
software and we don’t have a proper process for extracting change information.

Therefore we applied XDDP to our developments in order to solve these problems.

3. Overview of XDDP

3.1 XDDP [2][3][4]

XDDP, developed by a Japanese consultant, Yoshio Shimizu in 2007, is an enhancement-based
development process. The feature of XDDP is that documents made in XDDP are all about change
information about base software. We must make quite new type of documents only about changes. XDDP
consists of two independent processes to make the documents easily; one is for adding functions “addition
process” and the other is for changing base source code “change process”.

Figure 2 shows the process of XDDP. In addition process, we make “requirement specifications on adding
functions” about new tasks or functions. Then design documents are made from “requirement specifications
on adding functions”. The process is the same as new development process.

In change process, “change requirement specifications” about changes in base source code are made from
base documents, base source code and “requirement specifications on adding functions”. “Change

Requirements

Base
Requirement
Specifications

Base
Design

Documents

Change
points

Adding Functions Existing Functions

Figure.1 Conventional Process

Change
points

Base
Source
Code

Requirement
Specifications

Design
Documents

Design
Documents

Requirement
Specifications

Figure 1. Conventional Process



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 3 of 8

Figure 2. XDDP

requirement specifications” are about changes,
additions and deletions in base source code.
Then “Traceability Matrix (TM)” is made to
specify where change points are modified in the
base source code. TM is a matrix of change
specifications and the base source code. And
we make “change design documents” about
how to modify the base source code regarding
the change points in the TM.

In XDDP, change specifications are extracted
from change requirements in “change
requirement specifications”, analyzing related
documents and base source code. Change
specifications contain changes made to the
base source code where new functionality is
added in addition to changes and deletions in
existing functionality. All change points in base
source code are extracted and described in
“change requirement specifications”.

When a new module for new functions is
developed, we make “requirement
specifications on adding functions” about the
module. To add the module to the base source
code, we need to change base source code. The
change points in accepting the module in base
source code are described in “change requirement
specifications”. In this way, we describe all change
points in the documents and review them.

3.2 USDM [5]

“Requirement specifications on adding functions” and “change requirement specifications” are written with
USDM. USDM, developed by Yoshio Shimizu in 2005, is an effective manner to make requirement
specifications. Requirements and specifications are shown structurally to prevent missing specifications.

Figure 3 shows USDM format. Requirements are
described as series of function behaviors,
performance and constraints of system. And
specifications are extracted from the requirements
and written under the requirements. When the
scope of a requirement is large, the requirement
can be divided into some branch requirements. We
describe branch requirements under the
requirement. Specifications can be classified into
some groups to extract them effectively when
specifications increase.

“Requirement specifications on adding function”
are written in the same way as normal requirement
specifications. In “change requirement
specifications”, we describe only change points in
requirements and specifications.

Req.1

Reason

Comment

Branch Rquirement

Specification

Specificaiton

Requirement

Branch
Requirement

Req.1-1-1

Req.1-1-2

Req.1-1-3

Req.1-1-4

Req.1-1

Reason

Requirement

Comment

<Group A>

<Group B>

Backgrounds or Objectives

Figure 3. USDM Format

n

Base
Requirement
Specifications

Requirements

Design
Documents

Requirement
Specifications on
Adding Functions

Base
Design

Documents

Base
Source Code

Change Design
Documents

Addition Process Change Process

Change
Requirement
Specifications

+ TM



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 4 of 8

4. Application of XDDP to Developments

4.1 General Project in Navigation System [6]

We applied XDDP to our general development and verified the effect of XDDP. The development period
was two months. The changed source code was about 1KLOC (Kilo Line of Code). The engineer in charge
had been well informed about the source code and the navigation functions.

The productivity was increased by 26% when XDDP was used. The number of defects in QA test decreased
to zero by XDDP, although we had detected some defects before. We define the productivity by dividing
total development time into the size of total changed source code.

The man–hour distribution of the developments is shown in Figure 4. The upper one is the result of general
development with conventional process and the lower one is with XDDP. Comparing with these results,
XDDP is very effective in our developments.

Analyzing the distribution in detail, designs and tests are repeating in the conventional process. It is caused
by the defects due to the insufficient analysis of the base software. The required quality is achieved by
repeating designs and tests. In XDDP, design reviews are effectively executed and the coding time
decreases to the half of conventional process. In the eighth week, code reviews are executed. The
development is finished without repeated designs and tests.

4.2 Project without Accumulated Technical Information (PWAT)

Next we applied XDDP to the developments where engineers in charge lack the information about the base
source code. It becomes more difficult to estimate the impact of changes.

We call such a type of project “Project without Accumulated Technical information” (PWAT). In the general
project (4.1), it is supposed that engineers with the information about the base source code are in charge of
a development. Developments in PWAT are increasing recently. There is a high possibility that a
development will become PWAT when the base source code is in the following situation.

- source code changed in outsourced companies

- source code developed in other companies

- source code no engineer understands in detail

1st week 2nd week 3rd week 4th week 5th week 6th week 7th week 8th week

m
a
n
-h

o
u
r

XDDP

Figure 4. Comparison of the Man-Hour Distributions before and after XDDP Application

re
la

tiv
e

m
a

n
-h

o
u

r

1st week 2nd week 3rd week 4th week 5th week 6th week 7th week 8th week

re
la

tiv
e

m
a

n
-h

o
u

r

Conventional Process



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 5 of 8

Furthermore there are increasing cases where engineers don’t have enough knowledge of the development
domain. Using the source code developed in other companies, sometimes no documents are prepared in
advance. Then PWAT is classified into following two types in accordance with engineer’s knowledge level
and we applied XDDP to each PWAT.

A : no information only about the source code

B : no information about the source code and the development domain

In applying XDDP to PWAT, the problem is how to analyze the base source code and identify change
specifications correctly. We suggest improved XDDP to solve the problem by incorporating software
engineering techniques into XDDP. We define improved XDDP for each PWAT as X-PWAT(A) and
X-PWAT(B).

In later chapters, to confirm the effect of
each X-PWAT, we compare the results
according to Figure 5. In PWAT(A), rst2
(X-PWAT(A)) is compared to rst1
(XDDP).In PWAT(B), rst4 (X-PWAT(B)) is
compared to rst3 (X-PWAT(A)).

4.3 PWAT (A) : no information only about the source code [7]

The quality of change requirement specifications can’t be secured easily in PWAT(A) because of the
engineers who lack the information about the source code. It means that the change requirement
specifications depend on the engineers’ skills, experience and understanding of the development domain.
Required quality and productivity aren’t achieved in PWAT(A) when XDDP alone is used.

Then we suggest that the structure of change requirement specifications corresponds to the processing
flow of the base source code (Figure 6). When XDDP is applied to PWAT(A), the processing flow that
covers change points is made from base documents and base source code. Next we extract change
requirements and specifications corresponding to each processing in the flow. XDDP with this process
(making a processing flow and extracting information from the flow) is defined as X-PWAT(A).

Figure 5. Result Patterns of Project and Process

XDDP X-PWAT(A) X-PWAT(B)

PWAT(A) rst1 rst2 -

PWAT(B) - rst3 rst4

Process

Project

Processing Flow

Change Requirement Specifications
Creating List

Invalid Data

Valid Data

Check
Backup Data

End

Get
Backup Data

Save Song
Playback Position

Save the Result of
Creating Song List

Creat
Track List

Req. Req.1

Branch

Req.

Req.1.2

Spec. Req.1.2.1

Req.1.2.2

Branch

Req.

Req.1.3

The timing of creating song list is changed to be

determined by checking the backup data. It has

been determined by creating the track list before.

During recovery from the low voltage, navi plays the song

from the beginning. Navi has played from the last poisition

before when the voltage decreased.

<Change：check backup data>

The results are "successful" Otherwise navi

creates track list. [addition]

Song list is "not created successfully", navi

creats track list. [addition]

<Change：of get backup data>

<Change：creat track list>

<Change：save the result of creating song list>

no change

<Change：save song playback position>

Figure 6. X-PWAT(A)



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 6 of 8

We applied X-PWAT(A) to a development in PWAT(A). The size of total base source code was 2.6 KLOC
and the changed source code was about 0.3 KLOC. The development period was one month. The engineer
in the company took over the outsourced development. The engineer lacked information about the source
code but had the knowledge of the development domain.

Figure 7 shows the results of application of XDDP and X-PWAT(A) to PWAT (A). The productivity is almost
the same. But the defect detection rate is decreased to the half of XDDP by X-PWAT(A). The rate is
decreased in both review and test. It proves change specifications are extracted more correctly.
X-PWAT(A) with processing flow is effective in making change requirement specifications.

XDDP XDDP-PWAT(1)

D
ef
ec
t
de
te
ct
io
n
ra
te

[d
e
fe
c
ts
/
K
L
O
C
]

PWAT (B) : no information about the source code and the domain [8]

We applied XDDP to a development in PWAT(B) [7]. In PWAT(B), change requirement specifications are
made mainly from the base source code because we don’t have adequate documents about the base
software. The quality of change specifications depends on the engineers’ intuition, experience and skills.
The coverage of change requirements is narrow and it is insufficient to analyze the change points and
estimate the impact.

We applied X-PWAT(A) to PWAT(B) using information
we had got in PWAT(A). However, quality and
productivity were not improved as much as we had
expected. Because of the engineer who doesn’t
understand even the overview of base software, it is
difficult to make processing flow directly from the base
source code. As a result, the processing flow is not
enough to extract change requirements and change
specifications.

Therefore we suggest the technique to analyze the
base source code systematically with DFD (Data Flow
Diagram) [9], AFD (Architecture Flow Diagram) [10]
and sequence diagrams to make change requirement
specifications (Figure 8). XDDP with this process
(analyzing the source code with the design techniques)
is defined as X-PWAT(B).

Figure 9 shows X-PWAT(B). We make DFD from the base source code related to a change requirement
and identify the process affected by the change requirement. Then we make detailed DFD about the
process and find out the process which should be modified by the change requirement. The branch change
requirement is extracted from the process. Thus we extract change requirements by corresponding to DFD
in the structure of change requirements in USDM. Then, we describe the internal structure of the process
precisely with AFD and identify the object affected by the branch change requirement. By turning attention
to the object, change specifications are extracted from the sequence diagrams made from AFD.

Figure 7. Effectiveness of X-PWAT(A)

XDDP XDDP-PWAT(1)

P
ro
du
c
ti
vi
ty

[K
L
O
C
/
H
]

X-PWAT(A) X-PWAT(A)

Base
Source
Code

Sequence
Diagrams

AFDDFDChange
Requirements

Change
Requirement
Specifications

Figure 8. Overview of X-PWAT(B)



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 7 of 8

Change Requirement Specifications

Req. UTF.1

Reason

Branch

Req.

UTF.1.5

Reason

UTF.1.5.1

UTF.1.5.2

UTF.1.5.3

Add the process of definition and initialization

in valiables before they are called.

Add transferring the data to UTF-16 and

reserve it

Add UTF-16 in the character code when navi displays

new function on the screen

<Change：designation of user setting>

<Change：transferring character cod>

Add the process of transferring the data to

UTF-16 before saving

<Change：reading out file>

UTF-16 is a standard character code in the system. This

module must transfer other character code to UTS-16.

-

After UTF.1.5.1, get the data size of the value

when it is transferred to UTF-16.

<transferring character code>

Object A Object B

Object CObject D Object E

Object F Object G

ObjectA ObjectB ObjectC ObjectF

ProcessA

ProcessB

Transferring
code

ProcessC

DFD

AFDSequence Diagrams

P1
read A and B

Func Z

Data

[Trans]

[GUI]

P2
transfer

character

P2.1
read the output

P2.2
transfer data
by the setting

P2.3
set transferred
charater data

[GUI]
Data

We applied X-PWAT(B) to a development in PWAT(B). The size of total base source code was 9.5 KLOC
and the changed source code was about 0.5 KLOC. The development period was three months. The
engineer in charge took over the source code developed in another company. The engineer didn’t have any
information about the source code and the development domain at all.

Figure 10 shows the results of application of X-PWAT(A) and X-PWAT(B) to PWAT(B). The rate of defect
detection is decreased dramatically in tests and the number of defects is zero in QA test in X-PWAT(B).
Productivity is improved because defects in test are decreased by extracting change specifications properly.
It shows that X-PWAT(B) with DFD, AFD and sequence diagrams is more effective than X-PWAT(A) in
PWAT(B).

Figure 9. Extracting Change Specifications in X-PWAT(B)

XDDP-PWAT(1) XDDP-PWAT(2)

D
e
fe
c
t
de
te
c
ti
o
n
ra
te

[d
e
fe
c
ts
/
K
L
O
C
]

XDDP-PWAT(1) XDDP-PWAT(2)

P
ro
du

c
ti
vi
ty

[K
L
O
C
/
H
]

X-PWAT(B) X-PWAT(B)X-PWAT(A) X-PWAT(A)

Figure 10. Effectiveness of X-PWAT(B)



5th World Congress for Software Quality – Shanghai, China – November 2011

Process Improvement using XDDP Page 8 of 8

5. Conclusions

We applied XDDP to software developments of car navigation system in our company. Productivity and
quality were improved compared to the conventional developments. We’ve got the information about XDDP
from the experience. Then we applied XDDP to developments in PWAT. We suggested two techniques to
make change requirement specifications in accordance with the knowledge level of the engineers. They
were very effective in quality and productivity in each PWAT. Thus, XDDP is an effective process in our car
navigation system developments and productivity and quality can be improved in various situations.

References

[1] ISO/IEC 14764:2006(E) IEEE Std 14764-2006.

[2] The JUSE (Union of Japanese Scientists and Engineers) website [Online], available at
http://www.juse-sqip.jp/vol10/qualityone_01.html (accessed on 2011/5).

[3] The JUSE website [Online], available at http://www.juse-sqip.jp/vol11/quailtyone_01.html (accessed on
2011/8).

[4] Yoshio Shimizu, Process Improvement in Enhanced Development, Gijutsu-Hyohron co., Ltd.,2005 [in
Japanese].

[5] Yoshio Shimizu, Technique for Specifying and Describing Requirements, Gijutsu-Hyohron co., Ltd.,2007
[in Japanese].

[6] Yoshiyuki Kato, Software Process Improvement using XDDP Process, Software Quality Profession
2008 (SQiP2008), 2008.

[7] Eiji Nakai, Application of XDDP to a project without accumulated technical information in past
development, SQiP2009, 2009.

[8] Takahiro Tsuda, Technique to make change requirements specification using a design method,
SQiP2010, 2010.

[9] Tom Demarco, Structured Analysis and System Specification, Prentice Hall, 1979.

[10] Derek J. Hatley, Imtiaz A. Pirbhai, Strategies for Real Time System Specification, Dorset House
Publishing Co Inc.,U.S, 1988.


