
1

Acceptance Testing based on
Relationships among Use Cases

Kariyuki Susumu, Hironori Washizaki, Yoshiaki Fukazawa

Waseda University

Atsuto Kubo, Aoyama Media Laboratory

Mikio Suzuki, TIS Inc.

http://www.washi.cs.waseda.ac.jp/

5th World Congress for Software Quality – Shanghai, China – November 2011

http://www.washi.cs.waseda.ac.jp/

2

Acceptance testing and FIT

• Testing by users confirming whether the system performs the
requirements

• Framework for Integrated Test(FIT): framework for acceptance
testing

import fit.*;
public class CheckAuthenticationFixture extends ColumnFixture{

public String userName;
public String passWord;

public boolean valid() {
return true;

}
}

Fixture name

Testing items

Test case

CheckAuthentication

3

Overview of FIT

FITの概要

FIT

Program

under

testing

4.Test

Fixture

・
・
・

Test description file

Test result file

1.Develop
3.Input

User

6.Confirm

Developer

2.Develop

5.Output

CheckAuthentication

CheckAuthentication

4

Use case

• descriptions of the external functions of a system
from the viewpoint of actors
– Used for defining test cases of functionality acceptance testing

Use case: Reserve facility

Main flow name: Reserve facility

1. The system displays available

facilities.

2. The customer selects a facility.

…

Alternative flow:

Duplicate application

…

Use case description

施設を予約する
Display facilities

Select facility

…

Terminate
if duplicate…

Multiple execution flows could

exist in one use case.

5

Relationships among Use Cases

• Include: including steps of another use case

• Generalization: “is-a” between use cases

• Extend: adding steps of another use case to existing use case

Reserve

facility

Start rocess

Reserve

room

Customer

Log in

Transmits info.

Intercept

Encrypt

Attacker

6

Relationships and changes in execution flows

•Generalization •Include •Extend

Execution flows become complex as relationships

among use cases become complex.

7

What’s the problem?

In conventional approaches, execution flows of the use cases are
manually identified.

• Problem 1: A widely accepted definition for the coverage of the
acceptance test using test scenarios identified from use cases has
not yet been established

• Problem 2: A complicated relationship between use cases may lead
to the incomplete coverage of execution flows.

We propose solutions to these problems:
• Solution for problem 1: we define the coverage for the acceptance

test targeting test scenarios identified from use case descriptions.
Following this definition, the dependence of the judgment of
acceptance test completion on the individual can be avoided.

• Solution for problem 2: We automatically identify the execution flows
of use cases using a FIT-based-system for generating the test
scenarios and skeleton codes for the acceptance test environment

[IBM06] Peter Zielczynski, Traceability from Use Cases to Test Cases

http://www.ibm.com/developerworks/rational/library/04/r-3217/?S_TACT=105AGX90&S_CMP=content

8

Coverage of acceptance test using use cases

stepsAll

executedsteps

_#

_#

0
C’ 

branchesAll

testedBranches

_#

_#
C’1 

flowsAll

testedFlow

_#

_#
C’ 

Step coverage: C’0

Branch coverage C’1

All-execution-flows coverage C’∞
If the green flow has

been executed:

C’0=100%

C’1=50%

C’∞=50%

<<include>>

9

Overview of test environment generation system

Use case

descriptions

Domain

model

User

(Customer)

Coverage

selection

Program

under

testing

Fixtures

Test result file

4.Detailing

10.Confirm

7.Input to FIT

9.Output
Developer

6.Develop

8.Test

2. Skelton output

Test case file

3. Skelton output in Java

5.Detailing

FIT

Test environment generation system

1. Input

ReserveRoom

reserves() Room displayConfirma
tionNumber()

Reserve 101 10

Reserve 102 11

Reserves room

reserves() Room displayConfirma
tionNumber ()

Reserve 101 10

Reserve 102 11

10

Changes in execution flow: generalization

Reserve

facility

Start rocess

Reserve

room

Customer

Log in

Transmits info.

Intercept

Encrypt

Attacker

The customer confirms

the fee for the room.

The system displays

available facilities.

The customer chooses

to make a reservation

for a room.

The customer selects

the type of room.

The customer selects a

facility.

11

Generating skeletons of test scenarios

• Generation of skeleton test scenarios
– One table for one execution flow

– Specify domain entities by referring to the domain model

• Detailing of the test scenarios
ReserveRoom

systemDispla

ysAvailable

Facilities()

Room customerC

hooses

ToMakeARe

servation

ForARoom(

)

… systemTerm

inates

TheUseCase

()

Pass null pass … pass

Pass null pass … pass

ReserveRoom

systemDispla

ysAvailable

Facilities()

Room customerC

hooses

ToMakeARe

servation

ForARoom(

)

… systemTerm

inates

TheUseCase

()

List 101 Reserve … exit

List 201 Reserve … exit

Facility

Room

Reserv

ation

Facility

12

Generating fixtures

• Use case Abc -> AbcFixture

• Methods correspond to steps in use case description

• Attributes correspond to domain entities

room

reservation

customer

facility

systemDisplaysAvailableFacilities()

customerSelectsAFacility()

…

systemDisplaysAReservationConfirmationNumber()

systemTerminatesTheUseCase()

public class ReserveRoomFixture

extends ColumnFixture {

public Room room;

…

public String

systemDisplaysAvailableFacilities() {

return “pass”;

}

…

13

Adding fixture relationships

Added by inter-

type declaration

Added by inter-

type declaration

Added by inter-

type declaration

Added by inter-

type declaration

Relationship between fixtures corresponding to use case

relationship is defined by an inter-type declaration based

on aspect-oriented programming.

14

Experiment on identifying execution flows
• A comparative experiment was carried out using the

conventional(manual) and proposed techniques
– Identify all execution flows in “Manage …”

– List the test scenarios using branch coverage

• Subjects: six students with two years UML experience

• Statistics: 10 use cases, 47 steps, 32 flows
Manage a history

of clothes sales

Schedule customer’s

consultation date

Schedule dates of …

Evaluate

sales trend

Schedule dates of

repeated consultation

with customer

Adjust

designer’s

schedule

Input order

Estimate completion

day and price

Design

clothes

Input the

cost of clothes

Input sales

15

Result of comparative experiment

• Subjects listed 0-2 incorrect flows in conventional
technique
– In proposed technique, flows are automatically identified;

errors and incomplete coverage can be prevented.

• Subjects took 30-70 min in conventional technique
– These times can be almost eliminated using the proposed

technique.

T
im

e
 [
m

in
]

Subject

16

Summary and future work

• Contribution
– Three coverages for the acceptance test based on the test

scenarios identified from use cases

– Technique of automatically generating skeleton test
scenarios and skeleton test programs using FIT

– We confirmed that there is a possibility of calculating
incomplete coverage without our technique

– By using our technique,

• acceptance test completion can be determined without
depending on individual judgments

• efficiency of the acceptance test can be increased by
partial automated generation.

• Future work
– Larger experiments

– Generation of test cases in addition to execution flows

