

Suggestion of Testing Method

For Industrial Level Cyber-Physical System in Complex Environment

ASQN 2019

CPS are increasing, operate in complex conditions

More advanced testing methods are required.

- Cyber Physical System
- ▶ Field Test
- **▶** SW Control

However, How can we test everything to reflect reality?

Constraints on drones testing through actual flight

Difficult to verify that the drones perform their mission correctly even in strong winds

Altitude 150m, "blower not allowed"

International standard of tube : 3kg Video transmission and reception : 2km

Possible 2nd Accident in case of failure in securing position accuracy and drop accuracy

We can test SW functions on CPS without real condition.

CPS

E.g. Test the safety flight SW of drone without real fly.

Load test cases, simulator generate sensor data, read motor control data

Test Case

E.g. Test the safety flight SW of drone without real fly.

PC and drone send and receive sensor value by serial communication

After self-processing, it transmits control signal to motor

Deliver the control signal to the PC without the actual motor

The PC checks the sensor and control signal value and judges the test results.

E.g. Test the safety flight SW of drone without real fly.

Smaller HW, Larger SW, Need way to test complex SW

Each HW and SW part with interface can be testing separately

3 constraints should be satisfied to test the SW module in a virtual environment,

1. Test case should be designed as many as sufficient

To have confidence the CPS works safely

Diversity

Suggestion of
Practical Quantification Measuring Method of
Test Design Which Can Represent the Current Status
- 2017, IEEE

ISTQB Syllabus

Methods on Engineering

2. Test automation should be possible

Test cases might too many

Efficiency

3. Test results of real and virtual should be same

To test instead of real world

Example: Simulation Braking Result in rainy road = Actual braking result in rainy road

"Safety"

(Const. 1) Test case should be designed as many as we can think sufficient

Divide the condition into several pieces of data, Logically calculating all combinations

Fault

Function List		
Create the Serial port.	Implemented	
Input the message.	Implemented	
Change the message.	Implemented	
Edit the message.	Implemented	
Maintain the compatibility of the message.	Not Implemented	
Manage the record of changes of message.	Implemented	
Delete the message.	Implemented	
Restore the message.		
SPF1:		

ublic SerialPort OpenPort2(string portName)

Figure out though "Testing"

Related Technology

Specification	f = ab + cd	
Implemented	f' = abc + cd	
	LIF: 3rd Literal of 1st term fault (Insertion)	
$UTP_1(f)$	$\{t1:(TTTF),t2:(TTFT),t3:(TTFF)\}$	
when $t1$	f = T, f' = T	
when t2	$f = T, f' = \mathbf{F}$	
when t3	$f = T, f' = \mathbf{F}$	
t2,t3 makes f' $False$, MUTP can detect LIF type		
Logic anal	ysis method (MUTP example)	

ENF: Expression Negation Fault
TNF: Term Negation Fault
TOF: Term Omission Fault
LNF: Literal Negation Fault
LRF: Literal Reference Fault
LOF: Literal Omission Fault
LIF: Literal Insertion Fault
ORF+: Operator Reference Fault
ORF: Operator Reference Fault

Perform DNF-based logic analysis combined with Boolean expressions

(Const. 2) Test automation should be possible

Difficult for a manually test many TCs

Defined 7 requirements for automated testing of the CPS SW module

Hooking
Sniffing
Interpret of actuator control raw value
Disarm fail safe mechanism
Avoid Probe Effect
Convert the abstract test scenario to physical level virtual data
Support Test Recording and Replay

Req.2 Sniffing Intercept the actuator data from the SW model

Req.3 Interpretation of actuator data

Generate next virtual data using 4 data - TC, curr. Virtual data, curr. Actuator data, Environment Model

Hooking Sensitivity: Internal

Req.4 Disarm fail-safe mechanism

By disarming the fail-safe mechanism, it shortens the time for tests.

Hooking
Sensitivity: Internal

Sniffing

Interpret the result

Disarming

Avoid Probe Effect

Abstract → Physical

Record & Play

Req.5 Avoid Probe Effect

Hooking virtual data & sniffing actuator data without interfere working

Req.6 Convert the abstract TC to physical virtual data

Convert abstract TC to physically data that CPS can operate on

Hooking Sensitivity: Internal

Sniffing

Interpret the result

Disarming

Avoid Probe Effect

Abstract → Physical

Record & Play

Req.7 Support Test Recording and Replay

Check the test result is right

Hooking
Sensitivity: Internal

Sniffing

Interpret the result

Disarming

Avoid Probe Effect

Abstract → Physical

Record & Play

(Const. 3) Test results of real and virtual should be same

Have confidence this CPS works well in real world

Conclusion

The importance of testing is increasing According to the increase in CPS with safety Req.

Testing in virtual environment can be useful Tests in all environments requires too much time and money

THANK YOU

CONTACT: sichon@thinkforbl.com

Chon Sunil Park Jihwan

