
SQuBOK Project Team

Concise version:

Guide to the Software Quality
Body of Knowledge (SQuBOK)

Version 1

Originally published in Japanese by Ohmsha Ltd. (Tokyo, Japan), November 2007

JUSE: The Union of Japanese Scientists and Engineers

JSQC： The Japanese Society for Quality Control

This is an ABRIDGED TRANSLATION of the original Japanese version. SQuBOK Project Team has

investigated the feasibility of publication in other countries with this abridgment and will really appreciate

your comments including answers to questionnaire in the end.

Please send your comments to: juse@juse.or.jp or Fax: +81-3-5378-1220

* PDF file of this document can be downloaded from: http://www.juse.or.jp/software/squbok-eng.html

mailto:juse@juse.or.jp
http://www.juse.or.jp/software/squbok-eng.html

1

Copyright © 2007 JUSE. All rights reserved.

SQuBOK is an official registered trademark of JUSE (The Union of Japanese Scientists and Engineers).

SQuBOK Guide is the product of SQuBOK project team that JUSE and JSQC (The Japanese Society for

Quality Control) jointly organized.

Copyright and Reprint Permissions: This document may be copied, in whole or in part, in any form or by any means,

as is, or with alterations, provided that (1) alterations are clearly marked as alterations and (2) this copyright notice is

included unmodified in any copy. Any other use or distribution of this document is prohibited without the prior

express permission of JUSE.

NO WARRANTY

ISBN 978-4-274-50162-3 (original)

The Union of Japanese Scientists and Engineers (JUSE)

1-2-1, Koenji-Minami, Suginami-ku, Tokyo 166-0003 JAPAN

http://www.juse.or.jp/

Mail: juse@juse.or.jp

Phone: +81-3-5378-9812

Fax: +81-3-5378-1220

http://www.juse.or.jp/
mailto:juse@juse.or.jp

2

Foreword:

On the publication of SQuBOK Guide Version 1

Yoshinori Iizuka
SQiP Steering Board (formerly SPC Steering Board) Chair

Professor, University of Tokyo

The Union of Japanese Scientists and Engineers (JUSE) established its Software

Production Control Board (“SPC Board”) in 1980 in response to the application of

quality management to software—in short, the marriage of software engineering and

TQM (total quality management). Since its establishment, the SPC Board has focused

on spreading valuable methodologies for enhancement of the competitiveness of the

Japanese software industry as part of its efforts to systematize the practical study of

software quality. Until the mid-1990s, the Board’s activities consisted primarily of

research into the application of the TQM philosophy, methodology, and techniques

established primarily in the manufacturing industry to software. The Board went on to

accommodate structural changes in the software industry symbolized by the move in

the early 1990s toward networking, open systems, downsizing, and multimedia, and

later adjusted its approach in response to the building of new development and

maintenance paradigms.

Today, quality is only becoming more important as we move toward a world

characterized by the ubiquitous use of embedded software. We changed the Board’s

name from SPC to SQiP (Software Quality Profession; pronounced “skip”) in September

2007 as a way of reaffirming the significance of continuing to contribute to the field of

software quality and our resolution to do so. It is a commitment that evokes a profession

concerned with software quality and the professionals that work in it.

Looking back, the development of a body of knowledge concerning the software quality

as applied to a new age in software development was to prove to be an essential part of

SPC activities. Whatever the particular product or service, achieving quality requires a

motivation to achieve quality, thought and value systems concerning quality,

3

technologies (methodologies) that give expression to quality, management

methodologies that make the most of technology, and methodologies for encouraging the

appetites, knowledge, and technical skills of the people involved in associated

operations. No exception, software requires a body of knowledge related to these

concepts and methodologies with a focus on quality.

In keeping with an awareness of these facts, the SPC Steering Board set forth the

clearly defined objective of developing the SQuBOK (Guide to the Software Quality

Body of Knowledge; pronounced “sku-bok”) in the spring of 2005 to serve as the means

of access the body of knowledge, and Akira Sakakibara (IBM Japan), Yasuharu Nishi

(The University of Electro-Communications), Juichi Takahashi (Sony Computer

Entertainment), and Makoto Nonaka (Toyo University) embarked on a preparatory

examination of the issues. Based on these efforts, the SQuBOK Project Team was

formed in September 2005 to begin investigating the content of the work with Yasuko

Okazaki (IBM Japan) as leader and Nishi and Nonaka as sub-leaders. This work

proceeded in the form of a joint project in conjunction with the Software Group of the

Japanese Society for Quality Control led by Takeshi Kaneko (Musashi Institute of

Technology).

In their activities, the project set out to improve awareness of software quality

technologies and offer support to organizations seeking to establish a software quality

process by formalizing Japan’s implicit knowledge concerning software quality in a way

that would play a useful role in training software quality engineers in line with the

SQiP philosophy, and by organizing and systematizing the most recent software quality

themes.

The SQuBOK Guide was conceived to serve as an exhaustive source of

Japanese-language documents readily available in Japan, including good domestic case

studies that had been publicized, in an effort to provide a structural visualization of

useful knowledge accumulated by the Japanese software quality community.

The Alpha Version was compiled in April 2006 thanks to the energetic efforts of all those

involved. This choice of edition name indicated that the guide was not yet a complete

work. The pre-print was provided to a limited audience of experts capable of

4

determining whether the content, still at an early stage, was sufficiently developed.

This group of the following 13 individuals provided some 350 comments: Motoei Azuma

(Waseda University), Takehisa Okazaki (IBM Japan), Hideto Ogasawara (Toshiba),

Kenji Ogawa (IT Skill Standards Center, Information-Technology Promotion Agency),

Ryuzo Kaneko (NEC Communication Systems), Takeshi Kaneko (Musashi Institute of

Technology), Kiyohiro Kawai (ASP Communications), Masanori Kikumoto (Japan

Novel), Motomu Komura (System SWAT), Susumu Sasabe (NEC Communication

Systems), Shunichi Fukuyama (Tottori University of Environmental Studies), Fumiaki

Hotta (Japan Advanced Institute of Science and Technology), and Toshiyuki Doi (Kyowa

Exeo).

To create the Version 1, the project team of 14 individuals that put together the Alpha

Version was expanded to 27, and the project reorganized the body of knowledge and

compiled additional documentation over the course of a year and several months based

on the comments that had been received for the Alpha Version. The result of their

efforts was the Beta Version, which was released in September 2007 for public comment.

Then the project incorporated feedback from these comments as appropriate and added

documentation for the lowest level of topics (approximately 200 items) to complete the

Version 1. During this time, the team received receptive yet rigorous reviews from

advisors Mitsuru Oba (Hiroshima City University), Tohru Matsuodani (Debug

Engineering Institute and Hosei University), and Katsuyuki Yasuda (Tsukuba

International University).

Looking back, I have been interested in software quality and involved with the SPC

Board for more than 20 years, and I have served as the SPC chairman for more than 10

years, all of them marked by the ongoing transformation in the software industry.

Words fail to express the satisfaction of seeing this document that I had long known we

must compile—a document that is absolutely essential to the SPC Board and indeed to

the larger software quality community—come to fruition.

No field of endeavor starts out with a system of knowledge ready-made. This is

especially true for the practical sciences. Such systems are developed by accumulating,

visualizing, and structuring theory related to the basic methodologies necessary for

achieving the goals of the field and its development as well as countless nuggets of often

5

fragmentary knowledge expressed by a great many exceptional individuals who have

come before us, some of them teachers by negative example. What we call learning is by

no means the product of an intellectual game played by scholars, but rather the

systematization of practice to facilitate the reuse of knowledge. I cannot help but feel

pride in being able to present on behalf of the new SQiP Software Quality Committee

the Version 1 of this work and overwhelming emotion as one who is interested in this

field. I feel this way because when I sought to make some kind of contribution to the

field of software quality, this work was necessary above all else.

I believe we will be able to take a significant stride towards the establishment of a

software quality methodology by using this SQuBOK Guide as a foundation. It will be

possible to present the framework for an educational and training curriculum. It can

also serve as a basis for building models for planning human resources development and

career paths.

In addition to taking this opportunity to once again thank all of the individuals who

took responsibility for reviewing the Alpha Version draft, Alpha Version, Beta Version

draft, and Beta Version so that the Version 1 could be published, I would like to ask for

your continued understanding of the essence of SQuBOK—the ongoing development

and evolution of this body of knowledge—and to request that you continue to provide

rigorous yet constructive comments to that end.

I admire the ability of Yasuko Okazaki to lead so many occasionally fractious veterans

in order to bring the project to this level of completion. I am also moved by the diligence

of the members of the SQuBOK Formulating Subcommittee of the SQiP Software

Quality Committee and the SQuBOK Study Group of the Japanese Society for Quality

Control’s Software Group. I would like to take this opportunity to thank you all.

SQuBOK will play a central role in the practical research and popularization projects of

the SQiP Software Quality Committee. I look forward to your continued support and

leadership for both SQiP and the SQuBOK.

6

SQuBOK Project Team (at completion of the Version 1)

Leader:

Yasuko Okazaki (IBM Japan, Ltd.)

Sub-leaders:

Yasuharu Nishi (The University of Electro-Communications)

Makoto Nonaka (Toyo University)

Keizo Tatsumi (Fujitsu Limited)

Members:

Shinji Fukui (Omron Corporation)

Satoshi Fushimi (Information and Mathematical Science Laboratory Inc.)

Naomi Honda (NEC Corporation)

Shuji Honma (CSK Systems Corp.)

Noriko Iizumi (Hitachi High-Technologies Corporation)

Akira Ikeda (Hitachi Information & Communication Engineering, Ltd.)

Kazuo Kawai (Nil Software Corp.)

Keiko Koga (Hitachi, Ltd.)

Yoshinobu Machida (NTT Data Corporation)

Kouichi Miyagi (Osaka Gas Information System Research Institute Co., Ltd.)

Kiyoshi Mukai (Sumisho Computer Systems Corporation)

Takamasa Nara (NARA Consulting)

Keiko Nishio (Panasonic Mobile Communications Co., Ltd.)

Yoshiko Ogawa (Bank of Creativity Co., Ltd.)

Susumu Ohno (Nihon Kohden Corporation)

Tetsutaro Okawa (Nihon Unisys, Ltd.)

Kenji Onishi (Mamezou Co., Ltd.)

Akira Sakakibara (IBM Japan, Ltd.)

Tatsuya Shinozawa (INES Corporation)

Hideyuki Tabuchi (Mizuho Information & Research Institute, Inc.)

Hironori Washizaki (National Institute of Informatics)

Yoshimichi Watanabe (University of Yamanashi)

7

Tsuneo Yamaura (Tokai University)

Advisors

Tohru Matsuodani (Debug Engineering Institute, Hosei University)

Mitsuru Oba (Hiroshima City University)

Katsuyuki Yasuda (Tsukuba International University)

8

Introduction
Yasuko Okazaki

1. Regarding the SQuBOK Project Team

The SQuBOK Project Team, which launched its activities with a kick-off meeting on

September 20, 2005, is a volunteer-based group that started out with 10 participants.

Even when our ranks had swelled to 14 by the time we completed the 64-page Alpha

Version on April 28, 2006, we didn’t have enough people working on the project, and we

made an appeal before beginning to compile the Beta Version to companies and people

involved in the industry who were not yet participating, ultimately increasing the size

of our team to the current 27 people. Group members belong to either the SQuBOK

Formulating Subcommittee of the Union of Japanese Scientists and Engineers’ SQiP

Software Quality Committee (previously the SPC Board) or the SQuBOK Study Group

of the Japanese Society for Quality Control’s Software Group, but the SQuBOK Project

Team is at the core of actual work.

2. Objectives

We had the following five objectives in compiling the Version 1 of the SQuBOK Guide as

a Japan’s original BOK guide:

1. To help train individuals involved with quality assurance

2. To formalize Japan’s implicit knowledge concerning software quality

3. To organize and systematize new themes concerning software quality

4. To improve awareness of software quality technologies

5. To assist organizations seeking to establish software quality assurance

processes

The first objective, helping to train individuals involved with quality assurance,

indicates that the Version 1 of the SQuBOK Guide was compiled for an assumed

audience of engineers involved with quality assurance. It was necessary to limit the

scope of the first edition in order to ensure our ability to bring the SQuBOK Guide to

fruition during a short period of time, and we elected to start with knowledge areas

related to quality assurance activities and assume a readership of individuals involved

with quality assurance. We are examining whether the scope of the work can be

9

enlarged for second and subsequent editions. Areas where we are examining such

changes for second and subsequent editions are indicated with asterisks (*) in the tree

diagrams provided in Figures 1 through 4 of the introductory chapter.

The second objective, formalizing Japan’s implicit knowledge concerning software

quality, we sought to formalize the exceptional knowledge and experience of the field’s

domestic forerunners, information that is not included in BOK (body of knowledge)

guides published in Europe and the United States. To achieve this goal, we solicited the

cooperation and participation of as broad a group of companies and universities as

possible when organizing the SQuBOK Project Team. Facing the mass retirement

of baby boomer IT experts, we also sought to take advantage of this opportunity to

visualize their knowledge and experience.

The third objective, organizing and systematizing new themes concerning software

quality, indicates that the SQuBOK Guide should systematize a variety of scattered

knowledge related to software quality and provide a means of accessing existing

systems of knowledge. With IT now playing an important role in our social

infrastructure, recent years have seen a rapid increase in the knowledge and domains

with which IT engineers must be familiar, including service level agreements (SLAs),

the Information Technology Infrastructure Library (ITIL), security, IT skill standards,

agile development as expressed in eXtreme Programming (XP), software product lines,

aspect oriented programming (AOP), Guidelines for Improving Reliability of
Information Systems as published by the Ministry of Economy, Trade and Industry, and

newly published international standards. Although several good dictionary-like

resources concerning software quality management have been available in the past,

there is little in the way of a resource with comprehensive content that also includes

recent information. In light of this fact, we have sought to enable the Guide to serve as a

hub for accessing knowledge related to software quality. It is by no means intended to

supplant other systems of knowledge that include software quality knowledge (for

example, PMBOK, a project management BOK, or SWEBOK, a software engineering

BOK [ISO/IEC TR 19759: 2005]), but rather includes parts extracted from those works

relating to software quality.

The fourth objective, improving awareness of software quality technologies, indicates

10

our intention to provide a proper assessment to workers involved with software quality

by informing others of the fact that software quality is underpinned by extensive and

specialized technologies.

The fifth and last objective is to assist organizations seeking to establish software

quality assurance processes. We hope that organizations seeking to establish such

assurance processes in the future will be able to make use of this Guide.

3. Target audience

As described in relation to our first objective, the Version 1 assumes a readership of

engineers involved with quality assurance. However, engineers with design and

programming responsibilities can use it to gain an understanding from the standpoint

of how to best evaluate the merits of the specifications and code they develop. We trust

that the information it contains will help point the way toward the design and

development of high-quality specifications and code.

……

11

Contents

Foreword: On the Publication of the Version 1  Yoshinori Iizuka, SQiP Steering Board

Chair, Professor, University of Tokyo

SQuBOK Project Team, Advisor

Introduction  Yasuko Okazaki

Introductory Chapter  SQuBOK Guide Outline

Chapter 1. Fundamental Concept of Software Quality

1.1 KA: Quality Concept

1.2 KA: Quality Management

Chapter 2. Software Quality Management

Software Quality Management at Organizational Level

2.1 KA: Development and Operation of Software Quality Management System

2.2 KA: Life Cycle Process Management

2.3 KA: Process Assessment and Process Improvement Management

2.4 KA: Inspection Management

2.5 KA: Audit Management

2.6 KA: Human Resource Cultivation Management

2.7 KA: Legal Right and Responsibility Management

Project-level (Common) Software Quality Management

2.8 KA: Decision-making Management

2.9 KA: Procurement Management

2.10 KA: Architectural Management

2.11 KA: Risk Management

2.12 KA: Overall Project Management

Project-level (Specific) Software Quality Management

2.13 KA: Quality Plan Management

2.14 KA: Review Management

2.15 KA: Test Management

2.16 KA: Quality Analysis and Assessment Management

12

2.17 KA: Operational and Maintenance Management

Chapter 3. Software Quality Methods

3.1 KA: Matrix

3.2 KA: Quality Plan Techniques

3.3 KA: Requirement Analysis Techniques

3.4 KA: Review Techniques

3.5 KA: Test Techniques

3.6 KA: Quality Analysis and Assessment Techniques

3.7 KA: Operational and Maintenance Techniques

Appendix A: List of Recommended Readings/Papers

Appendix B: List of References/Further Readings

Appendix C: List of standards

Appendix D: List of Award-winning Papers

Appendix E: Index

13

Introductory Chapter: SQuBOK Guide Outline

(1) SQuBOK tree diagrams

Figures 1 through 4 provide tree diagrams describing the structure of SQuBOK.

The SQuBOK Guide divides knowledge areas into the three general categories of

“Fundamental Concept of Software Quality”, “Software Quality Management”, and

“Software Quality Methods” (see Figure 1). The initial category of “Fundamental

Concept of Software Quality” classifies fundamental concepts and approaches

concerning software quality. The next category of “Software Quality Management”

classifies activities for managing quality. The final category of “Software Quality

Methods” classifies specific methods, ranging from metrics and quality planning

techniques to operational and maintenance techniques.

Each category is organized into a hierarchy of knowledge areas, knowledge sub-areas,

and topics. More specifically, the initial category of “Fundamental Concept of Software

Quality” (see Figure 2) consists of the two knowledge areas of “Quality Concept” and

“Quality Management”. The “Quality Concept” knowledge area consists of the six

knowledge sub-areas of “Definition of Quality Concept (History)”, “Software Quality

Model”, “Dependability,” “Security”, Usability”, and “Safety”. Additionally, the

“Definition of Quality Concept (History)” knowledge sub-area includes 10 topics ranging

from “Definition of Quality (Gerald M. Weinberg)” to “Definition of Quality (ISO/IEC

25000)”.

The “Software Quality Management” category (See Figure 3) includes three

sub-categories between the category and knowledge area level due to the large amount

of content it covers: “Organizational Level”, organizing knowledge areas where

management and action often occur at the organizational level; “Project-level

(Common)”, organizing knowledge areas that are common to various development

phases; and “Project-level (Specific)”, organizing knowledge areas describing specific

development phases (see Figures 3 and 5). Under the sub-categories is the same

hierarchy of knowledge areas, knowledge-sub areas, and topics.

14

The “Software Quality Methods” category (see Figure 4) uses the same hierarchical

structure with knowledge areas, knowledge sub-areas, and topics.

In this way, the tree diagrams have four or five levels, consisting of categories,

(sub-categories), knowledge areas, knowledge sub-areas, and topics.

(2) SQuBOK Guide Organization

Chapters 1, 2, and 3 explain the sub-categories (S-CA), knowledge areas (KA), and

knowledge sub-areas (S-KA) for each of the three categories (CA). The description from

sub-categories to knowledge sub-areas both serves as a pointer to the lower levels of the

hierarchy and includes simple definitions and objectives. Explanatory information for

the lowest level of topics (T) includes headings such as “Overview”, “Related topics and

knowledge areas”, “References”, and “Further Readings”.

Readers seeking more information are recommended to consult the “References” and

“Further Readings” sections as well as the “List of Recommended Reading/Papers”

appendix A. Items under the “Related topics and knowledge areas” heading for each

topic are also a useful resource for additional information. To get the chapter and

section numbers listing the “Related topics and knowledge areas” heading, see

Appendix E, “Index”.

Appendix A, “List of Recommended Readings/Papers” provides a list of carefully

selected papers recommended by authoring team members. Authors worked to provide

an extensive selection of papers written in Japanese for the convenience of domestic

Japanese engineers.

Appendix B, “List of References/Further Readings” introduces the sources cited or

referenced in the Guide as well as Further Readings. Some content overlaps with

Appendix A. Appendix C, “List of standards” presents standards that have been covered

as topics or referenced in the text, and that the authors determined should be presented

in the form of a list based on their content or degree of influence.

Appendix D, “List of Award-winning Papers” lists papers that have been recognized at

symposia and in other academic settings.

15

Appendix E, “Index” provides a list of all knowledge areas, knowledge sub-areas, and

topics. To learn more about a given knowledge area, knowledge sub-area, or topic,

consult Appendix E or the tree diagrams presented in Figures 1 through 4 to find the

relevant chapter and section number.

16

Figure 1. “Overall View of Tree Diagram” (upper 4 layers, from category level to sub-knowledge area level)

17

Figure 2. “Fundamental Concept of Software Quality” Category (all layers, from category level to topic level)

18

Figure 3. “Software Quality Management” Category (all layers, from category level to topic level)

19

Figure 4. “Software Quality Methods” Category (all layers, from category level to topic level)

20

Figure 5. “Software Quality Management” Category Classification Method

……

プロジェクト
プロジェクト

プロジェクト

組織レベルのネジメント
計 画 工 程 保 守 工 程

・・・・・・

プロジェクトレベルの
ネジメント（工程共通）
プロジェクトレベルの
ネジメント（工程共通）
プロジェクトレベルの
ネジメント（工程共通）

プロジェクトレベルの
ネジメント（個別工程）

・・・・・・

M
ai
nt
en
an
ce

ph
as
e

・・・・・・

Organization

Project
Project

Project

Organizational Management

Project-level Management
(unique to phases)

P
la
nn
in
g

ph
as
e

Project-level Management
(common to phases)

Knowledge areas unique to phases
(ex. Test planning / test
environment management)

Knowledge areas common to
phases.
Normally managed at project-level.

Knowledge areas normally managed
at organizational-level.
(ex. Human resource development)

21

Chapter 1: Fundamental Concept of Software Quality

The “Fundamental Concept of Software Quality” category describes fundamental

concepts and approaches concerning software quality. This category is divided into the

“Quality Concept” and “Quality Management” knowledge areas.

The “Quality Concept” knowledge area consists of six knowledge sub-areas: “Definition

of Quality Concept (History)” exploring the development of the concept by various

standards and researchers; “Software Quality Model” as typified by ISO/IEC 9126;

“Dependability” describing the broad concept of reliability; and “Security” “Usability”

and “Safety” areas that are attracting a new level of interest recently.

The “Quality Management” knowledge area consists of eight knowledge sub-areas:

“Quality Control”, “Concept of Quality Assurance”, “Concept of Improvement”

“Characteristics of Software Quality Management”, “Concept of Software

Measurement”, “Concept of Software Assessment”, “V&V (Verification & Validation)”,

and “‘Kensa’ (Audit/Checkout)”.

As described above, this category is intended to provide a description of the basic

philosophy of software quality; explanations of specific approaches are left to

subsequent categories (Chapter 2 and Chapter 3). For example, this chapter focuses on

describing the general approach in the “Concept of Improvement” knowledge sub-area

of this category’s “Quality Management” knowledge area. Readers wishing to explore

more specific methods should consult the topics under “Process Assessment and Process

Improvement Management” under the “Software Quality Management” category

addressed in Chapter 2.

22

1.1 KA: Quality Concept

(1) Definition of Quality

Quality and software quality have been defined in various ways by researchers and ISO,

JIS, and IEEE standards. Currently, general international agreement has been reached

on user satisfaction as the ultimate goal. Here Japan’s “consumer-centric” approach as

espoused by Kaoru Ishikawa and others has been influential in Europe and the United

States. The topics of this knowledge sub-area introduce well-known definitions,

excluding deprecated standards.

In this edition, instances such as the following have not yet been organized as topics.

Garvin attempted to approach the quality of a given item (not limited to software) from

the perspective of interested parties as follows (Garvin 1984):

 Transcendent perspective: Quality can be recognized but is difficult to define.

 User perspective: Does quality comply with the purpose?

 Manufacturer perspective: Does quality conform to the specifications?

 Product perspective: Does quality lead to unique product characteristics?

 Value-based perspective: Quality depends on the amount the customer will pay

for value.

Using televisions and table clocks as subject matter, Kano proposed the categories of

“expected quality”, “one-dimensional quality”, and “appealing quality” from the user’s

perspective using the two-dimensional concepts of satisfaction and material fulfillment

(Kano 1984, Kano 1985).

 Expected quality elements: Quality elements the fulfillment of which is expected

as a matter of course and the inadequacy of which causes dissatisfaction

 One-dimensional quality elements: Quality elements that cause satisfaction if

fulfilled but dissatisfaction if inadequate

 Appealing quality elements: Quality elements that cause satisfaction if fulfilled

but to the inadequacy of which the user reacts with a sense of resignation

Kaoru Ishikawa has proposed shortening the Japanese term for quality from

“hinshitsu” (product quality) to simply “shitsu” (quality), a recommendation that is

echoed by Kano and Iizuka (Kano 2000, Iizuka 2005). In an era when quality

management was chiefly applied to tangible manufactured products, the term hinshitsu

23

with its connotation of “product quality” was not problematic and was used without any

sense of contradiction. In consideration of the facts that the number of service and other

industries providing intangible value is increasing and that expressing the concept of

quality as hinshitsu evokes the image of the quality of tangible products, these authors

are recommending that the Japanese term “shitsu” (quality) be used to denote exactly

the same meaning as the conventional expression hinshitsu, succinctly expressing the

intended meaning in all industries. They are interested in the characteristics and

features of needs in all areas, whether for products, services, systems, people, processes,

or operations. JIS Q 9005: 2005 Quality Management Systems: Guidelines for
Sustainable Growth (JIS Q 9005: 2005), which was developed by a committee chaired by

Iizuka, was the first Japanese standard to use the term “shitsu” for quality

management.

(2) Difficulty of satisfying users

Although quality is pursued in order to satisfy users, it is important to note that the

quality desired by users is not universal but rather subject to constant change. For

example, it was important for users of computer programs in the 1950s that those

programs operate properly, but subsequently the focus began to shift to reliability and

processing time. By the 1980s, reliability was taken as an expected requirement for

quality, and attention was shifting to usability. Today, security is one area attracting

significant user interest. Gradual, multi-year trends like these are augmented by

extremely short-term changes in user needs and satisfaction standards (even while a

given software product is being developed).

Additionally, it should be noted that user requirements and expectations are growing

increasingly diverse, and the importance given to each quality characteristic varies with

individual users (and stakeholders). In some cases, what is desirable to one user is not

so to another. Glass, as described in one topic, explains that the priority given to

individual quality characteristics should vary with the type of project, and Weinberg

also discusses the difficulty of assessing user requirements.

ISO/IEC 9126-1 divides the difficulty of assessing user requirements into the following

four areas: “(1) a user is often not aware of his real needs, (2) needs may change after

they are stated, (3) different users may have different operating environments, and (4)

24

it may be impossible to consult all the possible types of user, particularly for

off-the-shelf software” (ISO/IEC 9126-1: 2001). “Quality during use” was added to the

previous “internal quality” and “external quality” categories at the time of the

standard’s revision in 2001 in an effort to create a software quality model that better

reflected user satisfaction.

……

25

1.2 KA: Quality Management

This knowledge area organizes and introduces approaches to quality management.

First, we will review the necessity and importance of quality management.

Organizations are established and conduct activities to provide value to customers. In

order to ensure that organizations can enjoy a stable existence over the long term, it is

necessary to provide the products and services that are the chief output of the

organization’s activities to customers, receive compensation in return, and reinvest the

resulting profits to maintain the repeating production cycle of providing value. To

accomplish this, the products and services provided by the organization must satisfy a

wide range of customers over the long term. Quality management is a tool for

accomplishing this goal. Quality management refers to the process of directing and

managing organizations to supply products and services of good quality. Quality

management is essential if an organization is to enjoy a stable existence over the long

term. The fundamental philosophy of quality management consists of a

customer-centric approach that seeks to provide satisfaction to customers on an ongoing

basis.

Next, we will review the definition of quality management. In ISO 9000 (ISO

9000:2005), quality management is defined as “Coordinated activities to direct and

control an organization with regard to quality” and consists of the four activities of

quality planning, quality control, quality assurance, and quality “kaizen”
(improvement). As is made clear by this definition, ISO 9000 makes a series of careful

distinctions among quality management, quality control, and quality assurance.

Quality management is a comprehensive term, while quality control and quality

assurance are subordinate concepts. Quality planning involves the development of

plans including standards and other means to satisfy quality requirements. Quality

control consists of checking products against relevant standards to ensure compliance in

accordance with those plans. By contrast, quality assurance refers to the evidence-based

expression of the status of activities for checking quality. Finally, quality “kaizen”
involves making improvements to products and processes throughout this series of

activities.

Here we will review the Japanese approach to quality management. Modern Japanese

26

quality management began with the aid of instruction from the United States after the

end of World War II. Dr. W. Edwards Deming and Dr. Joseph M. Juran came to Japan to

lecture in 1950 and 1954, respectively, and worked to popularize the practice of quality

management through education. As the concept contributed significantly over time to

Japanese industry, it underwent a significant development from TQC to TQM and from

management focusing on production phases to management including a consideration of

administration-level issues. At the same time, its application expanded from the

manufacturing industry to the construction, power, service, and software industries,

among others. The important philosophies that inform these activities―for example,

reliance on “Genchi Genbutsu” (actual location and actual materials), small group

activities, the participation of all employees, and the revitalization of the

organization―crystallize the Japanese approach to quality management. It is here that

the roots of the Japanese approach, consisting of “Genba”(site)-centered “kaizen”
accomplished through the participation of all employees as opposed to the

commitment-driven approach prevalent in the United States and Europe, are to be

found (Iizuka 2005).

Through the process of this development, the focus of the approach taken to the

implementation of these philosophies shifted from product inspections to process control

and then to new product development (Ishikawa 1981). The inspection approach

consisted of selecting products that meet standards by means of product inspections so

that defective products are kept from entering the market. As this approach was being

pursued, it became evident that selecting defective products is inefficient, and engineers

began working to build standard-compliant products from the production process. This

change marked the adoption of the process control approach, which sought to build in

quality during the production phase. As this approach developed, companies began

working to manufacture quality products from the design stage, giving birth to the new

product development approach. The new product development approach seeks to build

in quality through both product design and production processes. The transformation in

these implementation approaches also influenced practices in Europe and the United

States.

Quality management philosophies can be analyzed in terms of a propensity to focus on

results and a propensity to focus on causes, with result-focused quality management

27

epitomized by the inspection-centric approach that developed chiefly in Europe and the

United States. This method, which is based on the imperative of preventing products of

poor quality from entering the market by strengthening inspections of the results

(products and services), seeks to clearly articulate the evaluation standards on which

inspections are based and to avoid supplying products that do not meet standards to the

market. By contrast, cause-focused quality management developed primarily in Japan

as described above to emphasize the processes that create products and services. By

identifying and then eliminating the reasons that poor-quality products are built, the

process of creating processes to build high-quality products from the beginning assumes

primary importance. To accomplish this goal, the conditions under which processes are

performed are measured and analyzed, and processes are subject to “kaizen”

improvement. Cause-focused quality management that emphasizes processes is gaining

adherents in Europe and the United States as well, as exemplified by the CMMI and Six

Sigma strategies. In Japan, a management system that gives a central role to quality in

management strategy has been proposed as a further refinement of this approach in the

form of JIS Q 9005: 2005 Quality Management Systems Guidelines for Sustainable
Growth (JIS Q 9005: 2005).

Next, we will examine quality management as it applies to software. Software has

several characteristics that differentiate it from hardware. The most important of these

include the fact that software is difficult to understand, including its development

process; that it consists of accumulated logic; and that it does not have production

processes in the manner of hardware. For these reasons, it is impossible to apply the

production process-based quality management techniques used for hardware as-is to

software. More so than the hardware production phase, the hardware design phase

resembles the process of software development. Additionally, growth in the scale of

software, as seen to a remarkable degree in the embedded software domain in recent

years, has a significant effect on quality. Because software is an accumulation of logic, it

becomes more difficult to obtain a clear view of its content as its scale increases, and

developers lose their grasp of that content. At the same time, closeness of

communication decreases and it becomes more difficult to facilitate teamwork due to

increases in the number of project developers. In this way, one characteristic of software

development is the extremely significant influence of the human element. Software

quality management requires an understanding of these characteristics of software.

28

In this knowledge area, the basic concept of software quality management described

above is augmented by discussions of software measurement, software evaluation, V&V,

and “kensa” (audit/checkout).

References

(ISO 9000: 2005)

ISO 9000: 2005, Quality Management Systems  Fundamentals and Vocabulary.

(Iizuka 2005)

Yoshinori Iizuka, Super-ISO Corporate Practice Series Introduction: Moving Beyond
ISO (Japanese version only), Japanese Standards Association, 2005.

(Ishikawa 1981)

Kaoru Ishikawa, Japanese Quality Control: What is TQC? (Japanese version), JUSE

Press, 1981. (What is Total Quality Control?: The Japanese Way, Prentice Hall, 1985)

(JIS Q 9005: 2005)

JIS Q 9005: 2005, Quality Management Systems  Guidelines for Sustainable Growth.

Further Readings

(SPC International Task Force 2003)

Software Production Control Board SPC International Task Force, Characteristics and
Background of Japanese Software Quality Control (Japanese version only), 22nd

Software Production Quality Control Symposium/Union of Japanese Scientists and

Engineers, pp. 427 to 450, 2003.

……

29

Chapter 2: Software Quality Management

The “Software Quality Management” category organizes activities for managing quality.

Quality should be pursued through systematic activities extending through all layers of

an organization, from the management level to the production floor, and there is a

diverse range of activities related to quality management. This chapter organizes these

activities by separating them into those that apply to organizations (companies or

departments), which include multiple software development projects, and those that

apply to individual projects, which are further divided into the following three

sub-categories in relation to individual phases in the life cycle:

 Activities that are common throughout the organization, or that apply to the

entire organization

 Activities that are undertaken in the context of projects, performed throughout

the life cycle, and do not vary by phase

 Activities that are undertaken in the context of projects and vary by phase

Software Quality Management at Organizational Level

This sub-category organizes activities that are common throughout the organization, or

that apply to the entire organization. It discusses the following knowledge areas:

 Development and Operation of Software Quality Management System (Section

2.1)

 Life Cycle Process Management (Section 2.2)

 Process Assessment and Process Improvement Management (Section 2.3)

 Inspection Management (Section 2.4)

 Audit Management (Section 2.5)

 Human Resource Cultivation Management (Section 2.6)

 Legal Right and Responsibility Management (Section 2.7)

30

2.1 KA: Development and Operation of Software Quality Management System

This knowledge area discusses the specific methods by which quality management in

the software domain is implemented in organizations.

(1) Quality management systems and the “kaizen” approach

ISO 9000 defines a quality management system as a “Management system to direct and

control an organization with regard to quality” for products and services, the primary

output of organizations (ISO 9000:2005). ISO 9001 (ISO 9001:2000), which defines the

requirements that quality management systems must fulfill, recommends the adoption

of a process approach for improving the effectiveness of such systems. The term “process

approach” refers to the explicit and systematic expression of the processes used inside

the organization, with particular emphasis on the interactions between processes, as

well as their operational management. The application of a process approach to quality

management systems enables both the system’s constituent elements to be organized

using the flow of “inputs  conversion activities  outputs” and the influence among

those elements to be clearly articulated. This approach makes it easy to implement a

cycle by which processes vital to the effectiveness of the system are identified and

systematically improved in order to facilitate the improvement of the quality

management system on an ongoing basis.

In Japan, activities typified by reliance on “Genchi Genbutsu” (actual location and

actual materials), small group activities, the participation of all employees, and the

revitalization of the organization has been practiced as part of TQC/TQM by the

hardware manufacturing industries. These activities comprise production floor-centric

“kaizen” activities based on the participation of all employees, and they represent an

approach that differs significantly from activities that focus on the process definition

described above. Quality management knowledge from these hardware-manufacturing

industries has been incorporated into the software domain, leading to the current

situation. In “Genba”(site)-centered “kaizen” activities based on the participation of all

employees, all production floor workers embrace the quality goals and work together to

achieve them. This approach has the advantages of enabling “kaizen” activities to reach

all areas of quality management thanks to its production floor focus and of enabling an

organization to be built by employees thinking and acting for themselves.

31

“Kaizen” activities that focus on the process definition and production floor-centric

“kaizen” activities based on the participation of all employees share a common

orientation in that they both seek to improve the effectiveness of quality management

systems. It is important to understand the advantages of both approaches and to

combine and implement them according to the characteristics of the organization in

question.

(2) Software quality management system characteristics and correspondence

Software quality management systems are quality management systems in the

software domain. This section discusses noteworthy aspects of quality management

systems, particularly in the software domain.

Software is characterized by intellectual difficulty that extends to the development

process, a preponderance of logic, and the presence of strong human elements such as

teamwork that exert an influence on software quality. Accordingly, it is of key

importance to develop software quality management systems with mechanisms that

make it possible for workers to understand difficult phenomena and organize large

amounts of logic from a technical perspective for practical use while also improving

teamwork and motivation on the part of developers. Chapter 2, “Software Quality

Management” and Chapter 3, “Software Quality Methods,” discuss the constituent

methods for implementing such systems.

Let us consider the requirements for an organization wishing to develop and operate a

software quality management system. The organization must have responsibility for

quality. There are two types of responsibility for quality: responsibility for products, and

responsibility for the processes that give rise to products (including not only procedures

but also all elements necessary to undertake the series of associated activities,

including tools, technologies, and developers). The field of software requires an

organizational format that is explicitly aware of these dual areas of responsibility. If the

focus is exclusively on responsibility for product quality, it is difficult to create and take

advantage of opportunities for introducing revolutionary technologies, for example

those that can dramatically change processes. On the other hand, limiting the focus to

responsibility for processes raises the possibility that problems may be overlooked due

32

to the lack of direct confirmation of product quality. Put simply, a focus on “kensa”
(audit/checkout) doesn’t ensure that high-quality products will be manufactured in the

first place, and a focus on “kaizen” doesn’t provide a means for judging whether there

are issues with the final deliverables. It does not matter whether responsibility for

products and processes is vested in a single organization or in separate organizations.

The important thing is that the software quality management system should be

advanced by an organization motivated by having responsibility for both of these

aspects of quality.

Additionally, it is important to provide mechanisms for improving the quality

management system on an organizational and ongoing basis. In the software domain, it

is both easy and effective to use the occurrence of faults as an opportunity to undertake

a cycle of “kaizen”. By analyzing the true cause of the fault, the process is improved so

that the fault is not “built in” to the product again. Repeating this “kaizen” process both

steadily improves process effectiveness and makes process “kaizen” part of the

organizational culture. Establishing the objective and scope of “kaizen” efforts according

to the sophistication of the quality management system is another important

consideration in accomplishing effective “kaizen”. This approach is the same as that

asserted by CMM/CMMI, i.e., that maturity levels are defined as stages in the evolution

of process “kaizen” and should not be skipped. Efforts by organizations whose quality

management systems operate at a low level of maturity to introduce advanced

technologies tend not to be successful. When a quality problem occurs while basic

measures have not been implemented, the organization must first implement “kaizen”
to ensure that those basics are reliably implemented.

Software quality management systems should be built and operated based on a

consideration of the characteristics of software as described above.

In addition to basic concepts in developing and operating software quality management

systems as described above, this knowledge area discusses quality management

systems, software quality promotion, and approaches for creating quality management

organizations.

References

33

(ISO 9000: 2005)

ISO 9000: 2005, Quality Management Systems  Fundamentals and Vocabulary.

(ISO 9001: 2000)

ISO 9001: 2000, Quality Management Systems  Requirements.

Further Readings

Software Production Control Board SPC International Task Force, Characteristics and
Background of Japanese Software Quality Control (Japanese version only), 22nd

Software Production Quality Control Symposium/Union of Japanese Scientists and

Engineers, pp. 427 to 450, 2003.

34

2.1.1 S-KA: Quality Management System

Understanding quality management systems requires an awareness of the differences

between the ISO9000 approach and the approach that evolved through the development

of TQC/TQM in Japan.

In ISO 9000, quality management systems are defined as a “Management system to

direct and control an organization with regard to quality” for the products and services,

the primary output of organizations (ISO 9000: 2005). Quality management systems

consist of the four activities of quality planning, quality control, quality assurance, and

quality “kaizen” pursued in response to quality objectives set in accordance with a

quality policy given direction by top management. The ISO 9000 standard spurred the

penetration of the quality management system approach, which spread rapidly

worldwide along with the registration system. However, it is not sufficient to develop a

quality management system as defined by ISO 9000. Such systems seek customer

satisfaction, but the quality requirements that should be fulfilled are limited chiefly to

criteria to which customers have agreed, and little attention is paid to latent customer

requirements.

Moreover, the ISO 9000 approach focuses on “kaizen” from the standpoint of quality

management system effectiveness but does little to address “kaizen” from the

perspective of improving the products and services themselves or exploring how they

might be created most efficiently. This orientation is due in part to natural limits

resulting from the need to employ evidence-based confirmation with explicit standards

founded on the assumption of third-party examination through the registration system.

In this way, ISO 9000 seeks to define a broad quality management system but ends up

with a system with a limited scope.

By contrast, the approach to quality management that evolved through the

development of TQC/TQM in Japan consists of “all activities associated with providing

products that customers can use with confidence” (Iizuka 2005) and is founded on a

meticulous pursuit of customer satisfaction and a program of quality-centric “kaizen”
accomplished with the participation of all employees. The definitive difference with the

European and American approach as represented by ISO 9000 lies in the distinctive

35

Japanese approach of focusing on putting the system in motion, even if it is inadequate,

and having all employees strive to improve processes themselves through a program of

“kaizen” as compared to the European and American approach of defining processes and

then verifying whether they are being executed in accordance with their definitions.

Overall, the Japanese approach functions as a system while using tools such as QC

circles and statistical methods. The advantage of this Japanese-style management

system lies in its ability to generate efficient, waste-free organizational operation by

enabling all employees to work toward the same objective. JIS Q 9005: 2005 Quality
Management Systems  Guidelines for Sustainable Growth (JIS Q 9005: 2005) proposed

a further refinement of this Japanese approach in the form of a management system

that places quality at the core of its management strategy.

For an organization to enjoy a stable existence over the long term, the products and

services it provides must satisfy a wide range of customers over the long term. Quality

management systems are an important tool in achieving that goal. It is desirable to

pursue a program of “kaizen” that reflects the characteristics of the organization based

on the understanding of the scope and limits of the ISO 9000 quality management

systems and the understanding of the advantages of Japanese-style quality

management systems.

References

(ISO 9001: 2000)

ISO 9001: 2000, Quality Management Systems  Requirements.

(ISO 9000: 2005)

ISO 9000: 2005, Quality Management Systems  Fundamentals and Vocabulary.

(JIS Q 9005: 2005)

JIS Q 9005: 2005, Quality Management Systems  Guidelines for Sustainable Growth.

(Iizuka 2005)

Yoshinori Iizuka, Super-ISO Corporate Practice Series Introduction: Moving Beyond
ISO (Japanese version only), Japanese Standards Association, p.35, 2005.

36

Further Readings

Kaoru Ishikawa, Japanese Quality Control: What is TQC? (Japanese version), JUSE

Press, 1981. (What is Total Quality Control?: The Japanese Way, Prentice Hall, 1985)

Yoshinori Iizuka and Jun’ichi Jido, Super-ISO Corporate Practice Series: The TQM
Philosophy (Japanese version only), Japanese Standards Association, 2005.

……

37

2.1.1.4 T: JIS Q 9005 Quality Management Systems -- Guidelines for Sustainable

Growth

JIS Q 9005 (JIS Q 9005: 2005) moves beyond the quality management system model

provided by the ISO 9000 family by providing a quality management system model

designed to enable organizations to adapt agilely to changes in their environments.

Moving beyond the ISO 9000 family refers to approaching quality management systems

from the standpoint of management and proposing an approach with self-initiated

innovation that can be used to respond to changes in a variety of business environments.

In this way, the approach seeks to enable long-lived, sustainable organizations. The

standard underwent the JIS standardization process with the purpose of spreading its

content widely as quality-oriented Japan.

The standard posits that organizations must have a capability for innovation and

learning to enable them to deal with change if they are to successfully address changes

in their environments and achieve sustainable growth. Additionally, it proposes the

articulation of a specific vision of organizational capability as well as a three-level

quality management model (consisting of a quality management system innovation

level, a quality management system continual “kaizen” level, and a product and service

continual “kaizen” level) in order to implement the organization’s business strategy.

Furthermore, it defines 12 principles of quality management for implementing this

approach. JIS Q 9006 provides guidelines for the self-assessment of quality

management systems in an effort to facilitate convenient self-assessment by

organizations implementing this approach (JIS Q 9006: 2005).

Objective

To enable companies to establish quality management systems capable of continuing to

grow in all business environments.

Method

To use this standard as a benchmark for quality management systems.

Results

To enable companies to continue to create a high level of customer value, secure

competitive advantage, and enjoy sustainable growth.

38

Key Points

This standard makes a point of using the Japanese term “shitsu” instead of “hinshitsu”
(both terms translate as “quality” in English) in defining quality as “Overall

characteristics of capability to meet needs or expectations” (JIS Q 9005: 2005). This

decision derives from the fact that the term hinshitsu is limited to suggesting quality in

the sense of “product quality” and reflects a desire on the part of the standard’s authors

that there be no psychological barriers to the use of the term by industries that provide

intangible value.

Related topics and knowledge areas

Standards related to quality management systems (ISO 9000 family)

References

(JIS Q 9005: 2005)

JIS Q 9005: 2005, Quality Management Systems  Guidelines for Sustainable Growth,

page 2.

(JIS Q 9006: 2005)

JIS Q 9006: 2005, Quality Management Systems  Guidelines for Self-assessment.

Further Readings

Yoshinori Iizuka (editor) and JIS Q 9005/9006 Guidelines Editing Committee

(author/editor), Quality Management Systems for Achieving Sustainable Growth, with
JIS Q 9005/9006 Guide Utilization Case Studies (Japanese version only), Japanese

Standards Association, 2006.

……

39

3.3.1.2 T: QFD (Quality Function Deployment)

Quality function deployment (QFD) is defined as “Methodology employed various types

of transformation and deployment in order to realize quality objective (JIS Q 9000) for a

product (JIS Q 9000), which may be abbreviated as QFD. INFORMATION: Term

referring collectivity to quality deployment, engineering deployment, cost deployment,

reliability deployment and job function deployment” (JIS Q 9025: 2003). The term

quality function deployment includes the two meanings of the deployment of quality

and the deployment of operational functions. Quality deployment refers to work

undertaken to articulate the type of quality required by customers and to analyze the

circumstances necessary to build that quality into manufactured products. Operational

function deployment refers to work undertaken to articulate functions performed to

build in the required level of quality. In short, quality function deployment acts as a tool

for articulating the quality that is required in the products being manufactured and

building operational mechanisms for building the articulated quality into the products.

Objective

Although one of the initial objectives of quality function deployment was to provide a

methodology that could be used when developing new products with superior quality

compared to competitors’ products, it has subsequently come to be used as a quality

assurance mechanism. In short, its application is being expanded so that it acts as a tool

for articulating the type of quality required during the planning and design phases,

communicating that quality to and reflecting it in the manufacturing phase.

Method

First, market (customer) requirements are identified, converted into expressions of

required functions and quality, and organized hierarchically by levels of abstraction.

Then the technologies necessary to implement those requirements are identified,

expressed in the form of quality elements and characteristic that indicate technical

elements, and organized hierarchically by quality levels of abstraction. Next, the

required functions and quality are combined with the quality elements and

characteristics, and a list of quality is created to express the correspondence between

the two. This clarifies the relationship of correspondence between the elements

comprising the product and the desired quality and articulates considerations in

building in the desired level of quality. This information is then used to determine the

40

plan quality and design quality, articulating the operations that must be performed in

order to reliably build the determined quality into the product. In performing these

tasks, it is important to address not only quality but also to articulate all action that

should be taken in each operation while considering factors such as cost and reliability.

Results

The introduction of quality function deployment can be expected to yield the following

benefits:

 An ability to gather and organize requirement information for the market

(customers)

 An ability to systematically organize the necessary technical elements in order

to incorporate customer requirements

 An ability to provide mechanisms for reliably incorporating the quality required

by customers

 An ability to reliably communicate quality elements integrated during the

planning and design phases to the manufacturing phase

Key Points

It is a frequent misconception that quality function deployment consists of creating a

list of quality. In fact, it is important to address the question of how customer

requirements can best be incorporated into products and to communicate the quality

elements determined during the planning and design phases to the manufacturing

phase to manufacture the product. Rather, it is critical to ask how quality can be

deployed through operations in order to build in quality as understood using the list of

quality.

Related topics and knowledge areas

Quality Plan Management

References

(JIS Q 9025: 2003)

JIS Q 9025: 2003, Performance Improvement of Management Systems  Guidelines for
Quality Function Deployment, page 3.

41

Further Readings

Shigeichi Moriguchi (editor), (Japanese version) Software Quality Management
Guidebook, Japanese Standards Association, 1990. (English version) Software
Excellence: A Total Quality Management Guide, Productivity Pr, 1997

Ayatomo Kanno and Tadashi Yoshizawa (supervising editors) and JUSE Software

Quality Management Study Group (editor), Software Quality Assurance Technologies
for the 21st Century: Ten Years of Accomplishments from the JUSE Software Quality
Management Study Group (Japanese version only), JUSE Press, 1994.

Katsuyuki Yasuda, Software Quality Assurance Approach and Practice: A Systematic
Approach to the Open Source Era (Japanese version only), JUSE Press, 1995.

Yoji Akao and Shigeru Mizuno, Quality Function Deployment: A Companywide
Approach to Quality Control (Japanese version only), JUSE Press, 1978.

Yoji Akao, Quality Function Deployment Utilization Manual 1: Introduction to Quality
Deployment (Japanese version only), JUSE Press, 1990.

Tadashi Ofuji, Michiteru Ono, and Yoji Akao, Quality Function Deployment Utilization
Manual 2: Quality Deployment Methods (I) (Japanese version only), JUSE Press, 1994.

Tadashi Ofuji, Michiteru Ono, and Yoji Akao, Quality Function Deployment Utilization
Manual 3: Quality Deployment Methods (II) (Japanese version only), JUSE Press, 1994.

……

42

3.5.7.1 T: Orthogonal Array Testing

Orthogonal Array testing is a technique used in designing combination tests for test

cases that cover all combinations between two factors rather than covering all

combinations by taking advantage of the property that the total number of level

combinations is the same between any two factors for orthogonal Array used in the

design of experiments method. Design of experiments is a method developed by R.A.

Fisher of England in 1920 to rationalize agricultural experiments, based on which Dr.

Genichi Taguchi developed a method known as quality engineering. Quality engineering

was introduced to the United States in the early 1980s and entered into widespread use,

chiefly in the automotive industry, where its techniques were known as Taguchi

methods. The application of orthogonal layouts to software testing began around 1984

in Japan (at Fujitsu), with technical development continued primarily by AT&T

engineers in the United States during the 1990s.

Objective

To reduce the number of test cases in a rational manner and design combination tests

with a viable number of cases.

Method

(1) The parameters (factors) for the function targeted by the test and their

respective values (levels) are organized.

(2) An orthogonal layout whose size reflects the number of factors and levels is

created.

(3) The factors and levels are allocated to the orthogonal layout.

(4) When there are relationships where factors cannot be combined (prohibitions),

these are avoided by changing the shape of the orthogonal layout.

(5) The results of the allocation process are used as test cases.

Results

There are examples of investigation reports indicating that many software faults are

caused by either one (single-mode fault) or two (double-mode fault) factors. This

technique enables reliable testing to detect faults of this scope.

Key Points

43

This method does not cover combinations of three or more factors, making it necessary

to add test cases reflecting combinations of three or more factors as needed.

Related topics and knowledge areas

All-pairs Testing

References

None

Further Readings

Shinobu Sato and Hiroki Shimokawa, Methods for Setting Software Test Parameters
Using the Design of Experiments Method (Japanese version only), Proceedings of the
4th SPC Symposium, JUSE Press, pp.1-8, 1984.

Madhav S. Phadke, “Planning Efficient Software Tests”, CrossTalk, October 1997,

http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp.

Genichi Taguchi, Functional Evaluation for Robust Design: Methods for Efficient
Development (Japanese version only), Japanese Standards Association, 2000.

Lee Copeland, A Practitioner’s Guide to Software Test Design, STQE Publishing, 2004.

Koichi Akiyama, Feature 3: Introduction to Combination Testing Using Orthogonal
Array (Japanese version only), Software Test Press/Gijutsu-Hyohron, Vol. 2, pages 89 to

107, 2006.

Masataka Yoshizawa, Koichi Akiyama, and Taro Sengoku, Introduction to HAYST
Software Testing: How to Use Orthogonal Array to Increase Quality and Productivity

(Japanese version only), JUSE Press, 2007.

Mitsuru Oba, Software Quality Assurance: Techniques for Gathering and Analyzing
Software Project Performance Data (Japanese version only), Soft Research Center,

1993.

http://www.stsc.hill.af.mil/crosstalk/1997/10/planning.asp.

44

Kenji Onishi, Practical Guide to Software Testing for Increased Reliability (Japanese

version only), Nikkei Business Publications, 2004.

Stephen H. Kan, Metrics and Models in Software Quality Engineering (2nd Edition),

Addison-Wesley, 2003.

……

45

3.6.1.3 T: Quality Probe (Hitachi)

Quality Probe (QP) is a technique employed by Hitachi for intermediate quality audit to

predict software reliability. Quality assurance department measures and evaluates

software quality during the testing stage using sampling tests in advance of the product

“kensa” (inspection). This approach provides an early assessment of quality and yields

guideline for various measures to improve quality.

Objective

To accelerate the removal of defects by evaluating quality during the testing stage and

obtain pointers to various measures for improving quality.

Method

(1) Some 10% to 20% of the “kensa” (inspection) items designated by the Quality

Assurance Departments are sampled for use as QP items.

(2) Quality assurance department performs actual testing using the identified

items.

(3) The number of remaining software defects is estimated using statistical

methods (binomial probability paper) based on the defects detected during the

testing.

Results

(1) Reliability is improved by having design departments detect defects in reference

to the number of remaining defects estimated using QP.

(2) Engineers can ascertain defect trends and causes and discover the weaknesses

of their software by analyzing and evaluating the nature of the defects detected

by QP. Then design departments can strengthen their testing perspective and

revitalize the testing process to enable the detection of more defects through

testing.

Key Points

(1) The standards governing the process, for example the scale of the software to

which QP is applied and the number of QP cycles to be performed, should be

articulated.

(2) When performing QP, it is necessary to determine whether the software is at a

46

proper level of quality. If the technique is not performed after testing has made

significant progress (normally, when 90% to 95% of testing is complete) and

software quality has reached a certain level, the sampling test will not serve to

estimate quality and will serve simply as a normal testing or a debugging

process.

Related topics and knowledge areas

Software Reliability Growth Model

References

None

Further Readings

Katsuyuki Yasuda, Software Quality Assurance Approach and Practice: A Systematic
Approach to the Open Source Era (Japanese version only), JUSE Press, 1995.

Chin-Kuei Cho, An Introduction to Software Quality Control, John Wiley & Sons, 1980

……

47

Questionnaire

1. If “Complete English version of SQuBOK guide” is published, will it be useful and widely accepted

in your country or not? (Y, N)

Why?

2. Please give us your comments or advice to the current topics organization (see tree diagram),

description, references, and further readings (see this abridgment) from viewpoint of global deployment.

3. Your Profile

Name:

Country:

Mail:

Field: Industry Academic Other:

Please send your answer/comments to following address:

Mail: juse@juse.or.jp

Fax: +81-3-5378-1220

mailto:juse@juse.or.jp

